313
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Effect of elevated atmospheric CO2 concentration on growth and physiology of wheat and sorghum under cadmium stress

, , , &
Pages 2867-2882 | Received 09 Aug 2018, Accepted 10 Sep 2018, Published online: 14 Nov 2018

References

  • Aebi, H. 1984. Catalase in vitro . Methods Enzymology 105:121–26.
  • Ainsworth, E. A. , and S. P. Long . 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . New Phytology 165:351–72. doi:10.1111/j.1469-8137.2004.01224.x.
  • Amani, A. L. 2008. Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenolpyruvate carboxylase activity in Triticum aestivum seedlings. Australian Journal of Basic and Applied Science 2:57–62.
  • Angelova, V. R. , R. V. Ivanova , V. A. Deliblatovamad , and K. I. Ivanov . 2011. Use of sorghum crops for in situ phytoremediation of polluted soils. Journal of Agricultural Science and Technology A1:693–702.
  • Benlloch-Gonzalez, M. , R. Bochicchio , J. Berger , H. Bramley , and J. A. Palta . 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Research 165:71–79. doi:10.1016/j.fcr.2014.04.008.
  • Blagodatskaya, E. , S. Blagodatsky , M. Dorodnikov , and Y. Kuzyakov . 2010. Elevated atmospheric CO2 increases microbial growth rates in soil, results of three CO2 enrichment experiments. Global Change Biology 16:836–48. doi:10.1111/j.1365-2486.2009.02006.x.
  • Bouyoucos, C. J. 1962. Hydrometer method improved for making particle-size analysis of soil. Journal of Agronomy 54:464–65. doi:10.2134/agronj1962.00021962005400050028x.
  • Bowes, G. 1993. Facing the inevitable, Plant and increasing atmospheric CO2. Annual reviews in plant physiology. Plant Biology 44:309–32. doi:10.1146/annurev.pp.44.060193001521.
  • Bowler, C. , M. Van Montagu , and D. Inze . 1992. Superoxide dismutase and stress tolerance. Annual Reviews in Plant Physiology 43:83–116. doi:10.1146/annurev.pp.43.060192.000503.
  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry 72:248–54. doi:10.1016/0003-2697(76)90527-3.
  • Bremner, J. M. 1996. Nitrogen-total. In Methods of soil analysis. Part 3, Chemical properties , D. L. Sparks ed., 3rd ed., 1085–1122. Madison, WI: ASA, SSSA, CSSA.
  • Cakmak, I. , D. Strboe , and H. Marschner . 1993. Activities of hydrogen peroxide scavenging enzymes in germinating wheat seeds. Journal of Experimental Biology 44:1476–83.
  • Chaoui, A. , S. Mazhoudi , M. H. Ghorbal , and E. El Ferjani . 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science 127:139–47. doi:10.1016/S0168-9452(97)00115-5.
  • Chen, Y. X. , Y. P. Wang , W. X. Wu , Q. Lin , and S. G. Xue . 2006. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of Total Environment 365:247–55. doi:10.1016/j.scitotenv.2005.04.028.
  • Cheng, W. , H. Sakai , K. Yagi , and T. Hasegawa . 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agriculture. For Meteorology 149:51–58. doi:10.1016/j.agrformet.2008.07.006.
  • Ci, D. , D. Jiang , B. Wollenweber , T. Dai , Q. Jing , and W. Cao . 2010. Cadmium stress in wheat seedlings, growth, cadmium accumulation and photosynthesis. Acta Physiology Plant 32:365–73. doi:10.1007/s11738-009-0414-0.
  • Cornelis, A. M. G. 2008. Physico-chemical and biological parameters determine metal bioavailability in soils. Science of Total Environment 406:385–95. doi:10.1016/j.scitotenv.2008.05.050.
  • Darke, B. G. , M. A. Gonzalez-Meler , and S. P. Long . 1997. More efficient plants: a consequence of rising atmospheric co2 . Annual Review of Plant Physiology Plant Molecular Biology 48:609 –639.
  • Das, P. , S. Samantaray , and G. R. Rout . 1997. Studies on cadmium toxicity in plants, a review. Environmental Pollution 98:29–36. doi:10.1016/S0269-7491(97)00110-3.
  • Dhindsa, R. S. , and W. Matowe . 1981. Drought tolerance in two mosses, correlated with enzymatic defence against lipid peroxidation. Journal Experimental Botany 32:79–91. doi:10.1093/jxb/32.1.79.
  • Ekmekci, Y. , D. Tanyolac , and B. Ayhan . 2008. Effects of cadmium on antioxidant enzymes and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165:600–11. doi:10.1016/j.jplph.2007.01.017.
  • Erda, L. , X. Wei , J. Hui , X. Yinlong , L. Yue , and B. Liping . 2005. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society Biological Science 360:2149–54. doi:10.1098/rstb.2005.1743.
  • Gadallah, M. A. A. 1995. Effects of cadmium and kinetin on chlorophyll content, saccharides and dry matter accumulation in sunflower plants. Biologia Plantarum 37:223. doi:10.1007/BF02913219.
  • Ghannoum, O. , S. Von Caemmerer , L. H. Ziska , and J. P. Conroy . 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure, a reassessment. Plant Cell Environment 23:931–42. doi:10.1046/j.1365-3040.2000.00609.x.
  • Gillespie, K. M. , A. Rogers , and A. E. Ainsworth . 2011. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). Journal Experimental Botany 62:2667–78. doi:10.1093/jxb/erq435.
  • Gomes, M. P. , T. C. L. Marques , M. O. G. Nogueira , E. M. Castro , and A. M. Soares . 2011. Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens . Scientia Agricola 68:566–73. doi:10.1590/S0103-90162011000500009.
  • Guo, H. Y. , H. Zhou , Y. Zhang , W. Du , Y. Y. Sun , Y. Yin , D. Pei , and J. Zhu . 2015. Combination of elevated CO2 levels and soil contaminants stress in wheat and rice. In Combined Stress in Plants , ed. Ramamurthy Mahaligam, 71–92. Springer.
  • Guo, H. Y. , H. X. Jia , J. G. Zhu , and X. R. Wang . 2006. Influence of the environmental behaviour and ecological effect of cropland heavy metal contaminants by CO2 enrichment in atmosphere. Chinese Journal Geochemistry 25:212. doi:10.1007/BF02840155.
  • Guo, H. Y. , J. G. Zhu , H. Zhou , Y. Y. Sun , Y. Yin , and D. P. Pei . 2011. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environmental Science & Technology 45:6997–7003. doi:10.1021/es2001584.
  • Gupta, P. K. 2000. Soil, plant, water and fertilizer analysis , 438. New Delhi. India: Agrobios.
  • Hassan, W. , M. Akmal , I. Muhammad , M. Younas , K. R. Zahaid , and F. Ali . 2013. Response of soil microbial biomass and enzyme activity to cadmium toxicity under different soil texture and incubation time. Australian Journal of Crop Science 7:674–80.
  • Hogy, P. , and A. Fangmeier . 2008. Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Sciences 48:580–91. doi:10.1016/j.jcs.2008.01.006.
  • Hogy, P. , and A. Fangmeier . 2009. Atmospheric CO2 enrichment affects potatoes, 1. Above ground biomass production and tuber yield. European Journal of Agronomy 30:78–84. doi:10.1016/j.eja.2008.07.007.
  • Hogy, P. , H. Wieser , P. Kohler , K. Schwadorf , J. Breuer , M. Erbs , S. Weber , and A. Fangmeier . 2009. Does elevated atmospheric CO2 allow for sufficient wheat grain quality in the future? Journal of Applied Botany Food Quality 82:114–21.
  • Huang, S. , X. Jia , Y. Zhao , B. Bai , and Y. Chang . 2017. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Chemosphere 168:606–16. doi:10.1016/j.chemosphere.2016.11.017.
  • Iannone, M. F. , M. D. Groppa , and P. B. Benavides . 2015. Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environmental Experimental Botany 109:201–11. doi:10.1016/j.envexpbot.2014.07.008.
  • IPCC . 2013. Climate Change, The Physical Science Basis. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC.
  • Jain, M. , M. Pal , P. Gupta , and R. Gadre . 2007. Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments, Role of 2-oxoglutarate. Indian Journal of Experimental Biology 45:385–89.
  • Jia, X. , Y. H. Zhao , T. Liu , and Y. H. He . 2017. Leaf defense system of Robinia pseudoacacia L. seedlings exposed to 3 years of elevated atmospheric CO2 and Cd-contaminated soils. Science of Total Environment 605–606:48–57. doi:10.1016/j.scitotenv.2017.06.172.
  • Jia, Y. , S. Tang , R. Wang , X. Ju , Y. Ding , S. Tu , and D. L. Smith . 2010. Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress. Journal of Hazardous Material 180:384–94. doi:10.1016/j.jhazmat.2010.04.043.
  • Jongen, M. , and M. B. Jones . 1998. Effect of elevated carbon dioxide on plant biomass production and competition in a simulated neutral grassland community. Annuals of Botany 82:111–23. doi:10.1006/anbo.1998.0654.
  • Karuppanapandian, T. , J. C. Moon , C. Kim , K. Manoharan , and W. Kim . 2011. Reactive oxygen species in plants, their generation, signal transduction, and scavenging mechanisms. Australian Journal Of Crop Science 5:709–25.
  • Kim, S. , and H. Kang . 2011. Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water Air Soil Pollution 219:365–75. doi:10.1007/s11270-010-0713-5.
  • Kimball, B. A. , K. Kobayashi , and M. Bindi . 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77:293–368.
  • Laspina, N. V. , M. D. Groppa , M. L. Tomaro , and M. P. Benavides . 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science 169:323–30. doi:10.1016/j.plantsci.2005.02.007.
  • Li, T. , Q. Tao , X. Han , and X. Yang . 2013. Effects of elevated CO2 on rhizosphere characteristics of Cd/Zn hyperaccumulator. Sedum Alfredii. Science of Total Environment 454:510–16. doi:10.1016/j.scitotenv.2013.03.054.
  • Li, Z. , S. Tang , X. Deng , R. Wang , and Z. Song . 2010. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals, Implication for phytoextraction and food safety. Journal of Hazardous Material 177:352–61. doi:10.1016/j.jhazmat.2009.12.039.
  • Lichtenthaler, H. K. , and A. R. Wellburn . 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 603:591–92. doi:10.1042/bst0110591.
  • Lindsay, W. L. , and W. A. Norvel . 1978. Development of a DTPA as a soil response investigation of Mn+2 complexation in natural and synthetic organics. Soil Science Society of America Journal 46:1137–43.
  • Liu, D. , K. Hu , J. Ma , W. Qiu , X. Wang , and S. Zhang . 2011. Effects of cadmium on the growth and physiological characteristics of sorghum plants. African Journal Of Biotechnology 10:15770–76.
  • Liu, H. J. , J. L. Zhang , and F. S. Zhang . 2007. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany 59:314–20. doi:10.1016/j.envexpbot.2006.04.001.
  • Loladze, I. 2002. Rising atmospheric CO2 and human nutrition, toward globally imbalanced plant stoichiometry. Trends in Ecology & Evolution 17:457–61. doi:10.1016/S0169-5347(02)02587-9.
  • Malley, C. , J. Nair , and G. Ho . 2005. Impact of heavy metals on enzymatic activity of substrate and on composting worms. Eisenia Fetida. Bioresource Technology 97:1498–502. doi:10.1016/j.biortech.2005.06.012.
  • Maria, S. D. , M. Puschenreiter , and A. R. Rivelli . 2013. Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environment 59:254–61. doi:10.17221/788/2012-PSE.
  • Mittler, R. , S. Vanderauwera , M. Gollery , and F. Van Breusegem . 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490–98. doi:10.1016/j.tplants.2004.08.009.
  • Morgan, J. A. , D. R. Lecain , A. R. Mosier , and D. G. Milchunas . 2001. Elevated CO2 enhances water relations and productivity and affect gas exchange in C3 and C4 grasses of the Colorado Shortgrass steppe. Global Change Biology 7:451–66. doi:10.1046/j.1365-2486.2001.00415.x.
  • Nelson, D. W. , and L. E. Sommers . 1982. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, Part 2. 2nd ed. Chemical and microbiological properties. Agronomy monograph no. 9 , ed. A. L. Page , 539–80. Madison, WI. USA: SSSA and ASA.
  • Ohlinger, R. 1996. Dehydrogenase activity with the substrate TTC. In Methods in soil biology , ed. F. Schinner , R. Ohlinger , E. Kandeler , and R. Margasin , 241–43. Berlin: Springer.
  • Olsen, S. R. , C. V. Cole , F. S. Watanabe , and L. A. Dean . 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate . Washington, DC: U. S. Department of Agriculture Circular No. 939.
  • Paglia, D. E. , and W. N. Valentine . 1987. Studies on the quantitative and qualitative characterization of glutathione peroxidase. Journal of Lab Medicine 70:158–65.
  • Pietrini, F. , D. Bianconi , A. Massacci , and M. A. Iannellib . 2016. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L. Journal of Hazardous Material 309:77–86. doi:10.1016/j.jhazmat.2016.01.079.
  • Pinto, A. P. , A. M. Mota , A. Varennes , and F. C. Pinto . 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of Total Environment 326:239–47. doi:10.1016/j.scitotenv.2004.01.004.
  • Piquery, L. , C. Davoine , C. Huault , and J. P. Billard . 2000. Senescence of leaf sheaths of ryegrass stubble, Changes in enzyme activities related to H2O2 metabolism. Plant Growth Regulators 30:71–77. doi:10.1023/A:1006308928018.
  • Polle, A. , T. Pfirrmann , S. Chakrabarti , and H. Rennenberg . 1993. The effects of enhanced ozone and enhanced carbon-dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environment 16:311–16. doi:10.1111/pce.1993.16.issue-3.
  • Poorter, H. 1993. Interspecific variation in the growth response of plants to an elevated CO2 concentration. Vegetation 104/105:77–97. doi:10.1007/BF00048146.
  • Posmyk, M. M. , R. Kontek , and K. M. Janas . 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety 72:596–602. doi:10.1016/j.ecoenv.2008.04.024.
  • Prior, S. A. , and G. B. Runion . 2011. A review of elevated atmospheric CO2 effects on plant growth and water relation, implications for horticulture. Hort. Science. 46 (2):158–62.
  • Qiu, R. L. , X. Zhao , Y. T. Tang , F. M. Yu , and P. J. Hu . 2008. Antioxidative response to Cd in a newly discovered cadmium hyper accumulator. Chemosphere 74:6–12. doi:10.1016/j.chemosphere.2008.09.069.
  • Rogers, A. , D. J. Allen , P. A. Davey , P. B. Morgan , E. A. Ainsworth , C. J. Bernacchi , G. Cornic , O. Dermody , E. A. Heaton , and J. Mahoney . 2004. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their lifecycle under free-air carbon cioxide enrichment. Plant Cell Environment 27:449–58. doi:10.1111/j.1365-3040.2004.01163.x.
  • Schwanz, P. , K. H. Haberle , and A. Polle . 1996. Interactive effects of elevated CO2, ozone and drought stress on the activities of antioxidative enzymes in needles of Norway spruce trees (Piceaabies, [L] Karsten) grown with luxurious N-supply. Journal of Plant Physiology 148:351–55. doi:10.1016/S0176-1617(96)80264-1.
  • Shafi, M. , J. Bakht , M. J. Hassan , M. Raziuddin , and G. Zhang . 2009. Effect of cadmium and salinity on growth and antioxidant enzyme activities of wheat. Bulletin of Environmental Contamination and Toxicology 82:772–76. doi:10.1007/s00128-009-9707-7.
  • Shah, K. , G. K. Ritambhara , V. Shalini , and R. S. Dubey . 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161:1135–44. doi:10.1016/S0168-9452(01)00517-9.
  • Siedlecka, A. , Z. Krupa , G. Samuelsson , G. Oquist , and P. Gardestrom . 1997. Primary carbon metabolism in Phaseolus vulgaris plants under Cd(II)/Fe interaction. Plant Physiology and Biochemistry 35:951–57.
  • Singh, P. K. , and R. K. Tewari . 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolisms of Brassica juncea L. plants. Journal of Environmental Biology 24:107–12.
  • Song, N. N. , X. M. Zhang , F. L. Wang , C. B. Zhang , and S. R. Tang . 2012. Elevated CO2 increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs. Journal of Environmental Radioactivity 112:29–37. doi:10.1016/j.jenvrad.2012.03.002.
  • Soudek, P. , S. Petrova , R. Vankova , J. Song , and T. Vanek . 2014. Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24. doi:10.1016/j.chemosphere.2013.09.079.
  • Sparks, D. L. 1996. Soil pH. In Methods of soil analysis. Part 3, Chemical Methods , ed. D. L. Sparks, 475–490 . Madison, WI: ASA, CSSA, SSSA.
  • Sumner, M. E. , and W. P. Miller . 1996. Cation exchange capacity, and exchange coefficients. In Methods of soil analysis. Part 2, Chemical properties , D. L. Sparks ed., 3rd ed., 891–901. Madison, WI: ASA, SSSA, CSSA.
  • Tang, S. , L. Xi , J. M. Zheng , and H. Li . 2003. Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bulletin of Environmental Contamination and Toxicology 71:988–97. doi:10.1007/s00128-003-0224-9.
  • Thamayanthi, D. , P. S. Sharavanan , and M. Vijayaragavan . 2011. Effect of cadmium on seed germination, growth and pigments content of Zinnia Plant. Current Botany 2:8–13.
  • Tian, S. , Y. Jia , Y. Ding , R. Wang , R. Feng , Z. Song , J. Guo , and L. Zhou . 2014. Elevated atmospheric CO2 enhances copper uptake in crops and pasture species grown in copper-contaminated soils in a micro-plot study. Clean Soil Air and Water 42:347–54. doi:10.1002/clen.v42.3.
  • United States Environmental Protection Agency (US EPA) . 1996. Method 3050b, Acid digestion of sediments, sludges, and soil, Revision 2 . Washington, DC: United States Environmental Protection Agency.
  • Van Assche, F. , and H. Clijsters . 1990. Effects of metals on enzyme activity in plants. Plant, Cell Environment 13:195–206. doi:10.1111/j.1365-3040.1990.tb01304.x.
  • Wand, S. J. E. , G. Midgley , and M. Jones . 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration, a meta-analytic test of current theories and perceptions. Global Change Biology 5:723–41. doi:10.1046/j.1365-2486.1999.00265.x.
  • Wu, H. B. , S. R. Tang , X. M. Zhang , J. K. Guo , Z. G. Song , S. A. Tian , and D. L. Smith . 2009. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. to trigger hyperaccumulation of cesium. Journal of Hazardous Material 170:861–70. doi:10.1016/j.jhazmat.2009.05.069.
  • Yanai, H. , F. J. Zhao , S. P. McGrath , and T. Kosaki . 2006. Effect of soil characteristics on Cd uptake by the hyperaccumulator. Thalaspi Caerulescens. Environmental Pollution 139:167–75. doi:10.1016/j.envpol.2005.03.013.
  • Yanai, R. D. , H. Majdi , and B. B. Park . 2003. Measured and modeled differences in nutrient concentrations between rhizosphere and bulk soil in a Norway spruce stand. Plant Soil 257:133–42. doi:10.1023/A:1026257508033.
  • Zheng, J. , H. Wang , Z. Li , S. Tang , and Z. Chen . 2008. Using elevated carbon dioxide to enhance copper accumulation in Pteridium revolutum, a copper-tolerant plant, under experimental conditions. International Journal of Phytoremediation 10:161–72. doi:10.1080/15226510801913934.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.