874
Views
55
CrossRef citations to date
0
Altmetric
Articles

Influence of Pyrolysis Temperatures on FTIR Analysis, Nutrient Bioavailability, and Agricultural use of Poultry Manure Biochars

ORCID Icon, &
Pages 402-411 | Received 03 Jul 2018, Accepted 11 Dec 2018, Published online: 03 Jan 2019

References

  • Abe, I., S. Iwasaki, Y. Iwata, H. Kominami, and Y. Kera. 1998. Relationship between production method and adsorption property of charcoal. TANSO 185:277–84. doi:10.7209/tanso.1998.277.
  • Ahmed, M. B., J. L. Zhou, H. H. Ngo, and W. Guo. 2016. Insight into biochar properties and its cost analysis. Biomass and Bioenergy 84:76–86. doi:10.1016/j.biombioe.2015.11.002.
  • Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil 337:1–18. doi:10.1007/s11104-010-0464-5.
  • Baldock, J. A., and R. J. Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry 33:1093–109. doi:10.1016/S0146-6380(02)00062-1.
  • Bird, M. I., P. L. Ascough, I. M. Young, C. V. Wood, and A. C. Scott. 2008. X-ray microtomographic imaging of charcoal. Journal of Archaeological Science 35:2698–706. doi:10.1016/j.jas.2008.04.018.
  • Bolan, N., R. Thangarajan, B. Seshadri, U. Jena, K. C. Das, H. Wang, and R. Naidu. 2013. Landfills as a biorefinery to produce biomass and capture biogas. Bioresource Technology 135:578–87. doi:10.1016/j.biortech.2012.08.135.
  • Calvelo, P., R. Kaal, A. J. Camps, L. M. Pardo, R. Aitkenhead, W. Hedley, F. M. Macias, J. Hindmarsh, and J. A. Macia-Agullo. 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42:1331–42. doi:10.1016/j.orggeochem.2011.09.002.
  • Cantrell, K., K. Ro, D. Mahajan, M. Anjom, and P. G. Hunt. 2007. Role of thermochemical conversion in livestock waste-to-energy treatments: Obstacles and opportunities. Industrial and Engineering Chemistry Research 46:8918–27. doi:10.1021/ie0616895.
  • Cantrell, K. B., P. G. Hunt, M. Uchimiya, J. M. Novak, and K. S. Ro. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107:419–28. doi:10.1016/j.biortech.2011.11.077.
  • Chan, K. Y., and Z. Xu. 2009. Biochar: Nutrient properties and their enhancement. In Biochar for environmental management. science and technology, ed. J. Lehmann and S. Joseph, 67–84. London, UK: Earthscan.
  • Chapman, H. D. 1965. Cation exchange capacity. In Methods of soil analysis, Part 2, ed. C. A. Black, 811–903. Madison, Wisconsin: ASA.
  • Chen, B., D. Zhou, and L. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology 42:5137–43. doi:10.1021/es8002684.
  • Chen, B., E. J. Johnson, B. Chefetz, L. Zhu, and B. Xing. 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility. Environmental Science and Technology 39:6138–46. doi:10.1021/es050622q.
  • Chen, B., Y. Wang, and D. Hu. 2010. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazard Material 179:845–51. doi:10.1016/j.jhazmat.2010.03.082.
  • Chen, B. L., Z. M. Chen, and S. F. Lv. 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology 102:716–23. doi:10.1016/j.biortech.2010.08.067.
  • Chen, Y. Q., H. P. Yang, X. H. Wang, S. H. Zhang, and H. P. Chen. 2012. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresources Technology 107:411–18. doi:10.1016/j.biortech.2011.10.074.
  • Cheng, C. H., J. Lehmann, J. E. Thies, S. D. Burton, and M. H. Engelhard. 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37:1477–88. doi:10.1016/j.orggeochem.2006.06.022.
  • Chun, Y., G. Y. Sheng, C. T. Chiou, and B. S. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology 38:4649–55. doi:10.1021/es035034w.
  • Cimo, G., J. Kucerik, A. E. Berns, G. E. Schaumann, G. Alonzo, and P. Conte. 2014. Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. Journal of Agriculture and Food Chemistry 62:1912−1918.
  • Conz, R. F., T. F. Abbruzzini, C. A. Andrade, D. M. B. P. Milori, and C. E. P. Cerri. 2017. Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars. Agricultural Sciences 8:914–33. doi:10.4236/as.2017.89067.
  • Cotana, F., V. Coccia, A. Petrozzi, G. Cavalaglio, M. Gelosia, and M. C. Merico. 2014. Energy valorization of poultry manure in a thermal power plant: Experimental campaign. Energy Procedia 45:315–22. doi:10.1016/j.egypro.2014.01.034.
  • DeLuca, T. H., M. D. MacKenzie, and M. J. Gundale. 2009. Biochar effects on soil nutrient transformations. In Biochar for environmental management. science and technology, ed. J. Lehmann and S. Joseph, 251–70. London, UK: Earthscan.
  • Demirbas, A. 2004. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2):243–48. doi:10.1016/j.jaap.2004.07.003.
  • DeSisto, W. J., N. Hill, S. H. Beis, S. Mukkamala, J. Joseph, C. Baker, T. H. Ong, E. A. Stemmler, M. C. Wheeler, B. G. Frederick, et al. 2010. Fast pyrolysis of pine sawdust in a fluidized-bed reactor. Energy and Fuels 24:2642–51. doi:10.1021/ef901120h.
  • Ducey, T. F., P. J. Bauer, G. C. Sigua, P. G. Hunt, J. O. Miller, and K. B. Cantrell. 2017. Manure-derived biochars for use as a phosphorus fertilizer in cotton production. Journal of Cotton Science 21:259–64.
  • Fuertes, A. B., M. C. Arbestain, M. Sevilla, J. A. Macic-Agull, S. Fiol, R. Lepz, R. J. Smernic, W. P. Aitkenhead, F. Arce, and F. Macias. 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover. Australian Journal of Soil Research 48:618–26. doi:10.1071/SR10010.
  • Garcia- Perez, M., X. S. Wang, J. Shen, M. J. Rhodes, F. J. Tian, W. J. Lee, H. W. Wu, and C. Z. Li. 2008. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Industral Engineering Chemistry Research 47 (6):1846–54. doi:10.1021/ie071497p.
  • Gaskin, J. W., C. Steiner, K. Harris, K. C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51:2061–69. doi:10.13031/2013.25409.
  • Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – A review. Biology and Fertility of Soils 35:219–30. doi:10.1007/s00374-002-0466-4.
  • Glazunova, D. M., P. A. Kuryntseva, S. Y. Selivanovskaya, and P. Y. Galitskaya. 2017. Assessing the potential of using biochar as a soil conditioner. IOP conf. series. Earth and Environmental Science 107 (2017):012059.
  • Guo, Y., and D. A. Rockstraw. 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100:12–19. doi:10.1016/j.micromeso.2006.10.006.
  • Havlin, J. L., J. D. Beaton, S. L. Tisadale, and W. L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management. 7th ed. New Jersey: Pearson Education Inc.
  • Hossain, M. K., V. Strezov, K. Y. Chan, A. Ziolkowski, and P. F. Nelson. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management 92:223–28. doi:10.1016/j.jenvman.2011.04.005.
  • Hossain, M. K., V. Strezov, K. Y. Chan, and P. F. Nelson. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–71. doi:10.1016/j.chemosphere.2010.01.009.
  • Jeffery, S., F. G. A. Verheijien, M. van der Velde, and A. C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144:175–87. doi:10.1016/j.agee.2011.08.015.
  • Kameyama, K., Y. Iwata, and T. Miyamoto. 2017. Biochar amendment of soils according to their physicochemical properties. Japan Agricultural Research Quarterly 51 (2):117–27. doi:10.6090/jarq.51.117.
  • Kazi, Z. H., M. I. Schnitzer, C. Monreal, and P. Mayer. 2011. Separation and identification of heterocyclic nitrogen compounds in bio-oil derived by fast pyrolysis ochicken manure. Journal of Environmental Science and Health: Part B 46:51–61. doi:10.1080/03601234.2010.515506.
  • Keiluweit, M., P. S. Nico, M. G. Johnson, and M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technololgy 44:1247–53. doi:10.1021/es9031419.
  • Kim, K. H., J. Y. Kim, T. S. Cho, and J. W. Choi. 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology 118:158–62. doi:10.1016/j.biortech.2012.04.094.
  • Kookana, R. S., A. K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh. 2011. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy 112:103–43.
  • Krull, E. S., J. A. Baldock, J. O. Skjemstad, and R. S. Smernik. 2009. Characteristics of biochar: Organo-chemical properties. In Biochar for environmental management. Science and technology, ed. J. Lehmann and S. Joseph, 53–67. London, UK: Earthscan.
  • Laird, D. A. 2008. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permantly sequestering carbon, while improving soil and water quality. Agronomy Journal 100:178–81. doi:10.2134/agronj2007.0161.
  • Lehmann, J. 2007. Bio-energy in the black. Frontiers in Ecology and Environment 5:381–87. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: An introduction. In Biochar for environmental management. Science and technology, ed. J. Lehmann and S. Joseph, 1–12. London, UK: Earthscan.
  • Lehmann, J., J. Gaunt, and M. Rondon. 2006. Biochar sequestration in terrestrial ecosystems – A review. Mitigation and Adaptation Strategies for Global Change 11:403–27. doi:10.1007/s11027-005-9006-5.
  • Lin, D., B. Pan, L. Zhu, and B. Xing. 2007. Characterization and phenanthrene sorption of tea leaf powders. Journal of Agriculture and Food Chemistry 55:5718–24. doi:10.1021/jf0707031.
  • Masek, O., P. Brownsort, A. Cross, and S. Sohi. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–55. doi:10.1016/j.fuel.2011.08.044.
  • Mathews, J. A. 2008. Carbon-negative biofuels. Energy Policy 36:940–45. doi:10.1016/j.enpol.2007.11.029.
  • Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays). Australian Journal of Soil Research 48:638–47. doi:10.1071/SR10049.
  • Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, M. Ahmedna, D. Rehrah, D. W. Watts, W. J. Busscher, et al. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3:195–206.
  • Novak, J. M., K. B. Cantrell, D. W. Watts, W. J. Busscher, and M. G. Johnson. 2014. Designing relevant biochars as soil amendments using lignocellulostic-based and manure-based feedstocks. Journal of Soils and Sediments 14:330–43. doi:10.1007/s11368-013-0680-8.
  • Ogawa, M., Y. Okimori, and F. Takahashi. 2006. Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change 11:429–44. doi:10.1007/s11027-005-9007-4.
  • Peng, X., L. L. Ye, C. H. Wang, H. Zhou, and B. Sun. 2011. Temperature- and duration- dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China. Soil and Tillage Research 112:159–66. doi:10.1016/j.still.2011.01.002.
  • Ro, K. S., K. B. Cantrell, and P. G. Hunt. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Industrial and Engineering Chemistry Research 49:10125–31. doi:10.1021/ie101155m.
  • SAS Institute Inc. 1999. The SAS system for windows, version 8.02. Cary, NC: SAS Institute.
  • Schmidt, M. W. I., and A. G. Noack. 2000. Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Global Biogeochemical Cycles 14:777–93. doi:10.1029/1999GB001208.
  • Sheth, A. C., and B. Bagchi. 2005. Investigation of nitrogen-bearing species in catalytic steam gasification of poultry litter. Journal of the Air and Waste Management Association 55:619–28. doi:10.1080/10473289.2005.10464653.
  • Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48:516–25. doi:10.1071/SR10058.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105:47–82.
  • Song, W., and M. Guo. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94:138–45. doi:10.1016/j.jaap.2011.11.018.
  • Suliman, W., J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez. 2016. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84:37–48. doi:10.1016/j.biombioe.2015.11.010.
  • Vaccari, F. P., S. Baronti, E. Leugato, S. Castaldi, F. Fornasier, and F. Miglietta. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34:231–38. doi:10.1016/j.eja.2011.01.006.
  • Winsley, P. 2007. Biochar and bioenergy production for climate change mitigation. New Zealand Science Review 64:5–10.
  • Wolf, D., J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1:1–9. doi:10.1038/ncomms1053.
  • Yao, Y., B. Gao, M. Zhang, M. Inyang, and A. R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–71. doi:10.1016/j.chemosphere.2012.06.002.
  • Yuan, J. H., R. K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperature. Bioresource Technology 102:3488–97. doi:10.1016/j.biortech.2010.11.018.
  • Zhang, J., and Q. Wang. 2016. Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia–nitrogen capture. Journal of Cleaner Production 112:3927–34. doi:10.1016/j.jclepro.2015.07.096.
  • Zhao, S. X., N. Ta, and X. D. Wang. 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10:1293–314. doi:10.3390/en10091293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.