623
Views
42
CrossRef citations to date
0
Altmetric
Articles

Plant Growth Promoting Traits of Indigenous Phosphate Solubilizing Pseudomonas aeruginosa Isolates from Chilli (Capsicumannuum L.) Rhizosphere

, , , &
Pages 444-457 | Received 14 Nov 2018, Accepted 03 Jan 2019, Published online: 20 Jan 2019

References

  • Afsal, A., and A. Bano. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticumaestivum). International Journal of Agriculture and Biology 10:85–88.
  • Ali, B., A. N. Sabri, and S. Hasnain. 2010. Rhizobacterial potential to alter auxin content and growth of Vignaradiata(L.). World Journal of Microbiology and Biotechnology 26:1379–84. doi:10.1007/s11274-010-0310-1.
  • Audenaert, K., G. B. De Meyer, and M. M. Haffte. 2002. Abscisic acid determines basal susceptibility of tomato to Botrytiscinerea and suppresses salicylic acid-dependent signalling mechanisms. Plant Physiology 128:491–501. doi:10.1104/pp.010605.
  • Bianco, C., and R. Defez. 2010. Improvement of phosphate solubilization and medicagoplant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology 76 (14):4626–32. doi:10.1128/AEM.02756-09.
  • Brady, N. C., and R. R. Weil. 2002. Soil phosphorus and potassium. In The nature and properties of soils (13th Ed.), 960. Upper Saddle River, NJ: Prentice-Hall, Inc.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:39–45. doi:10.1097/00010694-194501000-00006.
  • Brick, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology 57:535–38.
  • Brown, A. E., and J. T. G. Hamilton. 1993. Indole-3-ethanol produced by Zygorrhynchus moelleri, and indole-3 acetic acid analogue with antifungal activity. Mycological Research 96:71–74. doi:10.1016/S0953-7562(09)80999-4.
  • Cappuccino, J. C., and N. Sherman. 1992. Microbiology: A laboratory Manual. New York: 125–179.
  • Casida, L. E. 1977. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology 34 (6):630–36.
  • Chen, Z., S. Ma, and L. Liu. 2008. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresource Technology 99:6702–07. doi:10.1016/j.biortech.2007.03.064.
  • D L, R., M. K. Shivaprakash, and R. D. Prasad. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichodermaspp. on growth, nutrient uptake and yield of chickpea (CicerarietinumL.). Applied Soil Ecology. 28:139–46. doi:10.1016/j.apsoil.2004.07.005.
  • Duarah, I., M. Deka, N. Saikia, and H. D. Boruah. 2011. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1:227–38. doi:10.1007/s13205-011-0032-6.
  • Glick, B. R., Z. Cheng, J. Czarny, and J. Duan. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 119 (3):329–39. doi:10.1007/s10658-007-9162-4.
  • Gupta, M., S. Kiran, A. Gulati, B. Singh, and R. Tewaria. 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin- A biosynthesis of Aloe barbadensis Miller. Microbiological Research 167:358–63. doi:10.1016/j.micres.2012.02.004.
  • Gyaneshwar, P., K. G. Naresh, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83–93. doi:10.1023/A:1020663916259.
  • Hariprasad, P., and S. Niranjana. 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil 316:13–24. doi:10.1007/s11104-008-9754-6.
  • Hsu, J. 1996. Multiple comparisons theory and methods, 1–296. Boca Raton: Chapman & Hall/CRC.
  • Illmer, P., and F. Schinner. 1995. Solubilisationof inorganic calcium phosphates solubilisation mechanisms. Soil Biology and Biochemistry 27 (3):257–63. doi:10.1016/0038-0717(94)00190-C.
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi, India: Prentice Hall.
  • Jisha, M. S., and A. R. Alagawadi. 1996. Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiological Research 151:213–17. doi:10.1016/S0944-5013(96)80046-2.
  • Jones, N. P., and M. N. Sreenivasa. 1993. Effect of inoculation of VA Mycorrhiza and phosphate solubilizing bacteria on rhizosphereMicroflora of sunflower. II. Azotobacter and phosphate solubilizing bacteria. Journal of Eco Toxicology and Environmental Monitoring 3:55–58.
  • Karadeniz, A., A. Topcuo, A. Ylu, and S. Inan. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology and Biotechnology 22:1061–64. doi:10.1007/s11274-005-4561-1.
  • Kaur, G., and M. S. Reddy. 2014. Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology 61:35–40. doi:10.1016/j.ejsobi.2013.12.009.
  • Khiari, L., and L. E. Parent. 2005. Phosphorus transformations in acid light-textured soils treated with dry swine manure. Canadian Journal of Soil Science 85:75–87. doi:10.4141/S03-049.
  • Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interaction between a plant growth promoting rhizobacterium, an AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology 35:480–87. doi:10.1016/j.apsoil.2006.10.006.
  • Lee, K. J., K. S. Kamala, H. S. Sub, C. K. Seong, and G. W. Lee. 2008. Biological control of Phytophthorablight in red pepper (Capsicum annuumL.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology 24 (7):1139–45. doi:10.1007/s11274-007-9585-2.
  • Letham, D. S. 1971. Regulators of cell division in plant tissues XII A cytokinin bioassay using excised radish cotyledons. Physiologia Plantarum 25:391–96. doi:10.1111/ppl.1971.25.issue-3.
  • Linu, M. S., J. Sreekumar, A. K. Asok, and M. S. Jisha. 2017. Mineral phosphate solubilization by Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) fields. Journal of Tropical Agriculture 55 (2): 134–144, 2017.
  • Linu, M. S., J. Stephen, and M. S. Jisha. 2009. Phosphate solubilizing Gluconacetobactersp., Burkholderiasp. and their potential interaction with cowpea (Vignaunguiculata(L.) Walp.). International Journal of Agricultural Research 4:79–87. doi:10.3923/ijar.2009.79.87.
  • Linu, M. S., and M. S. Jisha. 2013. Effect of biocontrol agents against Colletotrichum capsici causing anthracnose of chilli (Capsicum annuum L.). International Journal of Biology, Pharmacy and Allied Sciences 2 (12):2218–23.
  • Panhwar, Q. A., A. Othman, Z. A. Rahman, S. Meon, and M. R. Ismail. 2012. Isolation and characterization of phosphate solubilizing bacteria from aerobic rice. African Journal of Biotechnology 11 (11):2711–19.
  • Pikovskaya, R. I. 1948. Mobilization phosphorus in soil in connection with vital activity of some microbial species. Microbiologica 1 (7):362–70.
  • Puchooa, D. 2004. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). African Journal of Biotechnology 3 (4):253–55. doi:10.5897/AJB2004.000-2046.
  • Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28:897–906.
  • Rodriguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319–39.
  • Rodríguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi:10.1007/s11104-006-9056-9.
  • Sandeep, A. R., S. Joseph, and M. S. Jisha. 2008. Yield and nutrient uptake of soybean (Glycine max (L) Merr) as influenced by phosphate solubilizing microorganisms. World Journal of Agricultural Sciences 4:835–38.
  • Shabanamol, S., J. Sreekumar, and M. S. Jisha. 2017. Bioprospecting endophytic diazotrophic Lysinibacillus sphaericus as biocontrol agents of rice sheath blight disease. 3 Biotech 7:337. doi:10.1007/s13205-017-0956-6.
  • Shabanamol, S., K. Divya, T. K. George, K. S. Rishad, T. S. Sreekumar, and M. S. Jisha. 2018. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiological and Molecular Plant Pathology 102:46–54. doi:10.1016/j.pmpp.2017.11.003.
  • Sharma, S. N., and R. Prasad. 2003. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and mussorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. Journal of Agricultural Sciences 141:359–69.
  • Singh, O., M. Gupta, V. Mittal, S. Kiran, H. Nayyar, A. Gulati, and R. Tewari. 2014. Novel phosphate solubilizing bacteria ‘Pantoeacypripedii PS1ʹ along with Enterobacteraerogenes PS16 and Rhizobium ciceroenhancethe growth of chickpea (Cicerarietinum L.). Plant Growth Regulation 73:79–89. doi:10.1007/s10725-013-9869-5.
  • Son, H. J., G. T. Park, M. S. Cha, and M. S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoeaagglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology 97:204–10. doi:10.1016/j.biortech.2005.02.021.
  • Srivastav, S., K. S. Yadav, and B. S. Kundu. 2004. Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian Journal ofMicrobiology 44 (2):91–94.
  • Stephen, J., and M. S. Jisha. 2011. Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderiasp. (MTCC 8369). Journal of Tropical Agriculture 49 (1–2):99–103.
  • Stephen, J., S. Shabanamol, K. S. Rishad, and M. S. Jisha. 2015. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech 5 (5):831–37. doi:10.1007/s13205-015-0286-5.
  • Taalab, A. S., and M. A. Badr. 2007. Phosphorus availability from compacted rock phosphate with nitrogen to sorghum inoculated with phospho-bacterium. Journal of Applied Sciences Research 3:195–201.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of ρ-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1:301–07. doi:10.1016/0038-0717(69)90012-1.
  • Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–86. doi:10.1023/A:1026037216893.
  • Vikram, A., and H. Hamzehzarghani. 2008. Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (VignaradiataL. Wilczek). Research Journal of Microbiology 3:62–72. doi:10.3923/jm.2008.62.72.
  • Vivek, K., K. B. Rishi, and N. Neeru. 2001. Establishment of phosphate solubilizing strains of Azotobacterchroococcumin the rhizosphere and their effect on wheat cultivarsunder green house conditions. Microbiological Research 156:87–93. doi:10.1078/0944-5013-00081.
  • Vyas, P., P. Rahi, and A. Gulati. 2009. Stresstolerance and genetic variability of phosphatesolubilizing fluorescent Pseudomonas from the cold deserts of the trans Himalayas. Microbial Ecology 58:425–34. doi:10.1007/s00248-009-9511-2.
  • Worcapon, S., P. Charida, R. Pongsak, A. Tadanori, and B. Sophon. 2013. Characteristics of phosphate solubilization y phosphate- solubilizing bacteria isolated from agricultural chili soil and their efficiency on the growth of chilli (Capsicumfrutescens L.cv.Hua Rua). Chiang Mai Journal of Science 40 (1):11–25.
  • Yu, X., X. Liu, T. H. Zhu, G. H. Liu, and C. Mao. 2011. Isolation and characterization of phosphate solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biology and Fertility of Soils 47:437–46. doi:10.1007/s00374-011-0548-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.