261
Views
7
CrossRef citations to date
0
Altmetric
Articles

The Impact of Woody Biochar on Microbial Processes in Conventionally and Organically Managed Arable soils

, , , ORCID Icon, ORCID Icon &
Pages 1387-1402 | Received 29 Dec 2018, Accepted 16 Apr 2019, Published online: 24 May 2019

References

  • Alves, A., P. Oliveira, V. Herling, P. Trivelin, P. Luz, T. Alves, R. Rochetti, and W. Barioni Jr. 2011. New methods to quantify NH3 volatilization from fertilized surface soil with urea. Revista Brasileira Ciência Do Solo 35:133–40. doi:10.1590/S0100-06832011000100012.
  • Amador, J. A., A. M. Glucksman, J. B. Lyons, and J. H. Görres. 1997. Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science 162:808–25. doi:10.1097/00010694-199711000-00005.
  • Ameloot, N., S. Sleutel, S. D. C. Case, G. Alberti, N. P. McNamara, C. Zavalloni, B. Vervish, G. Vedove, and S. C. De Neve. 2014. Mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biology and Biochemistry 78:195–203. doi:10.1016/j.soilbio.2014.08.004.
  • Bell, J. M., C. A. Robinson, and R. C. Schwartz. 2006. Changes in soil properties and enzyme activities following manure applications to a rangeland. Rangeland Ecological Management 59:314–20. doi:10.2111/05-172R1.1.
  • Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency. Annals Stats 29:1165–88.
  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57:289–300.
  • Biederman, L. A., and W. S. Harpole. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 5:202–14. doi:10.1111/gcbb.12037.
  • Campbell, C. D., S. J. Chapman, C. M. Cameron, M. S. Davidson, and J. M. Potts. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology 69:3593–99.
  • Chen, J., X. Liu, J. Zheng, B. Zhang, H. Lu, Z. Chi, G. Pan, L. Li, J. Zheng, X. Zhang, et al. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology 71:33–44. doi:10.1016/j.apsoil.2013.05.003.
  • Cordovil, C. M. D. S., A. de Varennes, R. Pinto, and R. C. Fernandes. 2011. Changes in mineral nitrogen, soil organic matter fractions and microbial community level physiological profiles after application of digested pig slurry and compost from municipal organic wastes to burned soils. Soil Biology and Biochemistry 43:845–52. doi:10.1016/j.soilbio.2010.12.023.
  • Cordovil, C. M. D. S., J. Coutinho, M. Goss, and F. Cabral. 2005. Potentially mineralizable nitrogen from organic materials applied to a sandy soil: Fitting the one-pool exponential model. Soil Use Manage 21:65–72. doi:10.1079/SUM2005294.
  • Deb, D., M. Kloft, J. Lassig, and S. Walsh. 2016. Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecology and Sustainable Food Systems 40:145–68. doi:10.1080/21683565.2015.1118001.
  • Deenik, J. L., T. McClellan, G. Uehara, M. J. Antal, and S. Campbell. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal. Soil Science Society of America 74:1259–70. doi:10.2136/sssaj2009.0115.
  • Degens, B. P., and J. A. Harris. 1997. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biology & Biochemistry 19:1309–20. doi:10.1016/S0038-0717(97)00076-X.
  • Dempster, D. N., D. B. Gleeson, Z. M. Solaiman, D. L. Jones, and D. V. Murphy. 2012. Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a course textured soil. Plant and Soil 354:311–24. doi:10.1007/s11104-011-1067-5.
  • Deng, S. P., and M. A. Tabatabai. 1997. Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biology and Fertility of Soils 24:141–46. doi:10.1007/s003740050222.
  • EC. Council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Accessed November 2017. http://ec.europa.eu/environment/water/water-nitrates/index_en.html.
  • Gul, S., and J. K. Whalen. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology & Biochemistry 103:1–15. doi:10.1016/j.soilbio.2016.08.001.
  • Gul, S., J. K. Whalen, B. W. Thomas, and V. Sachdeva. 2015. Physico-chemical properties and microbial responses in biochar amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment 206:46–59. doi:10.1016/j.agee.2015.03.015.
  • Ippolito, J., M. Stromberger, R. Lentz, and R. Dungan. 2014. Hardwood biochar influences calcareous soil physicochemical and microbiological status. Journal of Environmental Quality 43:681–89. doi:10.2134/jeq2013.08.0324.
  • Jeffery, S., F. G. A. Verheijen, M. van der Velde, and A. C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144:175–87. doi:10.1016/j.agee.2011.08.015.
  • Kammann, C., H.-P. Schmidt, N. Messerschmidt, S. Linsel, D. Steffens, C. Müller, H. W. Koyro, P. Conte, and S. Joseph. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5:11080. doi:10.1038/srep11080.
  • Kelly, C. N., F. C. Calderón, V. Acosta-Martínez, M. M. Mikha, J. Benjamin, D. W. Rutherford, and C. Rostad. 2015. Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions. Pedosphere 25:329–42. doi:10.1016/S1002-0160(15)30001-1.
  • Kolb, S. E., K. J. Fermanich, and M. E. Dornbush. 2009. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal. Soil Science Society of America 73:1173–81. doi:10.2136/sssaj2008.0232.
  • Kumar, S., R. E. Masto, L. C. Ram, P. Sarkar, J. George, and V. A. Selvi. 2013. Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecological Engineering 55:67–72. doi:10.1016/j.ecoleng.2013.02.011.
  • Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strategies Global Change 11:395–419. doi:10.1007/s11027-005-9006-5.
  • Liu, S., Y. Zhang, Y. Zong, Z. Hu, S. Wu, J. Zhou, Y. Jin, and J. Zou. 2016. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. Global Change Biol Bioenergy 8:392–406. doi:10.1111/gcbb.12265.
  • Makoi, J., and P. Ndakidemi. 2008. Selected soil enzymes: Examples of their potential 407 roles in the ecosystem. African Journal of Biotechnology 7:181–91.
  • Mandal, S., R. Thangarajan, N. S. Bolan, B. Sarkar, N. Khan, Y. S. Ok, and R. Naidu. 2016. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 142:120–27. doi:10.1016/j.chemosphere.2015.04.086.
  • Marousek, J., M. Vochozka, J. Plachy, and J. Zak. 2017. Glory and misery of biochar. Clean Technologies and Environmental Policy 19:311–17. doi:10.1007/s10098-016-1284-y.
  • Nannipieri, P., L. Giagnoni, L. Landi, and G. Renella. 2011. Role of phosphatase enzymes in soil. Phosphorus in Action, Soil Biol 26:215–43.
  • Ouyang, L., L. Yu, and R. Zhang. 2014b. Effects of amendment of different biochars on soil carbon mineralization and sequestration. Soil Research 52:46–54. doi:10.1071/SR13186.
  • Ouyang, L., Q. Tang, L. Yu, and R. Zhang. 2014a. Effects of amendment of different biochars on soil enzyme activities related to carbon mineralization. Soil Research 52 (706):716.
  • Ouyang, L., and R. Zhang. 2013. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments 13:1561–72. doi:10.1007/s11368-013-0738-7.
  • Paz-Ferreiro, J., G. Gascó, B. Gutiérrez, and A. Méndez. 2012. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils 48:511–17. doi:10.1007/s00374-011-0644-3.
  • Piotrowska-Długosz, A. 2014. Enzymes in soil fertility. In Enzymes in agricultural sciences, 44–79. Poland: OMICS Group.
  • Póvoas, I., and M. F. Barral. 1992. Métodos de Análise de Solos. Lisboa, Portugal: Instituto de Investigação Científica Tropical, Ministério do Planeamento e da Administração do Território. 61. Comunicações do IICT, Série de Ciências Agrárias, Nº 10.
  • Prayogo, C., J. E. Jones, J. Baeyens, and G. D. Bending. 2014. Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702. doi:10.1007/s00374-013-0884-5.
  • R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/.
  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin III, E. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. Schellnhuber, et al. 2009. Planetary boundaries: Exploringthe safe operating space for humanity. Ecology and Society 14 (2):32. doi:10.5751/ES-03180-140232.
  • Rondon, M. A., J. Lehmann, J. Ramirez, and M. Hurtado. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708. doi:10.1007/s00374-006-0152-z.
  • Sakrabani, R., J. Kern, U. Mankasingh, C. Zavalloni, G. Zanchettin, A. Bastos, P. Tammeorg, S. Jeffery, B. Glaser, and F. Verheijen. 2017. Representativeness of European biochar research: Part II – Pot and laboratory studies. Journal of Environmental Engineering and Landscape Management 25:152–59. doi:10.3846/16486897.2017.1331167.
  • Sinsabaugh, R. L., R. K. Antibus, A. E. Linkins, C. A. McClaugherty, L. Rayburn, D. Repert, and T. Weiland. 1993. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecol 74:1586–93. doi:10.2307/1940086.
  • Sokal, R. R., and F. J. Rohlf. 1995. Biometry: The principles and practice of statistics in biological research, 442–46. 3rd ed. New York: W.H. Freeman and Company.
  • Sparks D. L., A. L. Page, P. A. Helmke, R. H. Loeppert,  P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner, Eds. 1996. Methods of soil analysis, part (3), chemical methods. Madison, Wisconsin: SSSA.
  • Spokas, K. A., K. B. Cantrell, J. M. Novak, D. A. Archer, J. A. Ippolito, H. P. Collins, A. A. Boateng, I. M. Lima, M. C. Lamb, A. J. McAloon, et al. 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality 41:973–89. doi:10.2134/jeq2011.0069.
  • Sun, Z., E. W. Bruun, E. Arthur, L. W. Jonge, P. Moldrup, H. Hauggaard-Nielsen, and L. Elsgaard. 2014. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biol Fertil Soils 50:1087–97. doi:10.1007/s00374-014-0928-5.
  • Tabatabai, M. A., and J. M. Bremmer. 1969. Use of p-nitrophenylphosphate for assay of 425 soil phosphatase activity. Soil Biology & Biochemistry 1:301–07. doi:10.1016/0038-0717(69)90012-1.
  • Tabatabai, M. A., and J. M. Bremner. 1972. Assay of urease activity in soil. Soil Biology & Biochemistry 4:479–87. doi:10.1016/0038-0717(72)90064-8.
  • Taghizadeh-Toosi, A., T. J. Clough, L. M. Condron, R. R. Sherlock, C. R. Anderson, and R. A. Craigie. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. Journal of Environmental Quality 40:468–76.
  • Taghizadeh-Toosi, A., T. J. Clough, R. R. Sherlock, and L. M. A. Condron. 2012. Wood based low temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant and Soil 353:73–84. doi:10.1007/s11104-011-1010-9.
  • Tammeorg, P., A. C. Bastos, S. Jeffery, F. Rees, J. Kern, E. R. Graber, M. Ventura, M. Kibblewhiten, A. Amaro, A. Budai, et al. 2016. Biochars in soils: Towards the required level of scientific understanding. Journal of Environmental Engineering and Landscape Management. doi:10.3846/16486897.2016.1239582.
  • Ulyett, J., R. Sakrabani, M. Hann, and M. Kibblewhite. 2014. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur J Soil Sci Special Issue on Biochar 65:96–104. doi:10.1111/ejss.12081.
  • Ventura, M., C. Zhang, E. Baldi, F. Fornasier, G. Sorrenti, P. Panzacchi, and G. Tonon. 2014. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. Eur J Soil Sci Special Issue on Biochar 65:186–95. doi:10.1111/ejss.12095.
  • Verheijen, F., S. Jeffery, A. Bastos, M. van der Velde, and I. Diafas. 2009. Biochar application to soils - a critical scientific review of effects on soil properties, processes and functions, 149. Luxembourg: Office for the Official Publications of the European Communities. EUR24099EN.
  • Weyers, S. L., J. Gaskin, A. M. Liesch, and K. C. Das. 2010. Earthworms, microbes and the release of c and n in biochar amended soil. In “Proceedings of the 2010 U.S. Biochar Initiative Conference, June 27-30, Ames, Iowa”.
  • WRB. 2006. World reference base for soil resources. World Soil Resources Reports No. 103. FAO, Rome. ISBN 92-5-105511-4.
  • Zimmerman, A. R., B. Gao, and M. Y. Ahn. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology & Biochemistry 43:1169–79. doi:10.1016/j.soilbio.2011.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.