623
Views
26
CrossRef citations to date
0
Altmetric
Articles

Potassium Silicate Improves Salinity Resistant and Affects Fruit Quality in Two Strawberry Cultivars Grown Under Salt Stress

, ORCID Icon, &
Pages 1439-1451 | Received 10 Apr 2019, Accepted 10 Apr 2019, Published online: 26 May 2019

References

  • Abdel Latef, A. A., and L. S. Tran. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science 7:243. doi:10.3389/fpls.2016.00243.
  • Botia, P., J. M. Navarro, A. Cerda, and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. European Journal of Agronomy 23 (3):243–53. doi:10.1016/j.eja.2004.11.003.
  • Brandwilliams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28 (1):25–30. doi:10.1016/S0023-6438(95)80008-5.
  • Broadley, M., P. Brown, I. Cakmak, J. F. Ma, Z. Rengel, and F. Zhao. 2002. Benifitical Elements. In Marschner’s Mineral Nutrition of Higher Plants, ed. P. Marschner, 249–69. San Diego, USA: Academic Press.
  • Bruinsma, J. 2017. World agriculture: Towards 2015/2030: An FAO study. Routledge, London, UK.
  • Bybordi, A. 2016. Influence of zeolite, selenium and silicon upon some agronomic and physiologic characteristics of canola grown under salinity. Communications in Soil Science and Plant Analysis 47 (7):832–50. doi:10.1080/00103624.2016.1146898.
  • Christou, A., G. A. Manganaris, I. Papadopoulos, and V. Fotopoulos. 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany 64 (7):1953–66. doi:10.1093/jxb/ert055.
  • Colla, G., Y. Roupahel, and M. Cardarelli. 2006. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience 41 (3):622–27. doi:10.21273/HORTSCI.41.3.622.
  • Coskun, D., D. T. Britto, W. Q. Huynh, and H. J. Kronzucker. 2016. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science 7:1072.
  • Dallagnol, L. J., F. A. Rodrigues, A. R. M. Chaves, F. X. R. Vale, and F. M. DaMatta. 2013. Photosynthesis and sugar concentration are impaired by the defective active silicon uptake in rice plants infected with. Bipolaris Oryzae. Plant Pathology 62 (1):120–29. doi:10.1111/j.1365-3059.2012.02606.x.
  • Delavar, K., S. Enteshari, S. Gagoonani, and S. Kamali. 2016. Effect of silicon on the mineral content of borage (Borago officinalis L.) under aluminum stress. Journal of Biological Sciences 16 (4):28. doi:10.3923/jbs.2016.128.135.
  • Epstein, E., J. D. Norlyn, D. W. Rush, R. W. Kingsbury, D. B. Kelley, G. A. Cunningham, and A. F. Worna. 1980. Saline culture of crops: A general approach. Science 210 (4468):399–404.
  • FAO. 2014. FAO statistical yearbook. World food and agriculture. www.http://faostat.fao.org/beta/en/#data/QC.
  • Fleck, A. T., S. Schulze, M. Hinrichs, A. Specht, F. Waßmann, L. Schreiber, and M. K. Schenk. 2015. Silicon promotes exodermal casparian and formation in Si-accumulating and Si-excluding species by forming phenol complexes. PloS One 10 (9):e0138555. doi:10.1371/journal.pone.0138555.
  • Galli, V., R. Da Silva Messias, E. C. Perin, J. M. Borowski, A. L. Bamberg, and C. V. Rombaldi. 2016. Mild salt stress improves strawberry fruit quality. LWT-Food Science and Technology 73:693–99. doi:10.1016/j.lwt.2016.07.001.
  • Garriga, M., C. A. Muñoz, P. D. Caligari, and J. B. Retamales. 2015. Effect of salt stress on genotypes of commercial (Fragaria x ananassa) and Chilean strawberry (F. chiloensis). Scientia Horticulturae 195:37–47. doi:10.1016/j.scienta.2015.08.036.
  • Giampieri, F., S. Tulipani, J. M. Alvarez-Suarez, J. L. Quiles, B. Mezzetti, and M. Battino. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28 (1):9–19. doi:10.1016/j.nut.2011.09.020.
  • Giusti, M., and R. E. Wrolstad. 2001. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. Current Protocols in Food Analytical Chemistry 1:F1–2.
  • Grattan, S. R., and C. M. Grieve. 1999. Salinity-mineral nutrient relation in horticultural crops. Scientia Horticulturae 78:127–57. doi:10.1016/S0304-4238(98)00192-7.
  • Guntzer, F., C. Keller, and J. D. Meunier. 2011. Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development 32 (1):201–13. doi:10.1007/s13593-011-0039-8.
  • Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics 701596:1–18. doi:10.1155/2014/701596.
  • Haghighi, M., and M. Pessarakli. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161:111–17. doi:10.1016/j.scienta.2013.06.034.
  • Han, Y., W. Lei, L. Wen, and M. Hou. 2015. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae). PloS One 10 (3):e0120557. doi:10.1371/journal.pone.0120557.
  • Hashemi, A., A. Abdolzadeh, and H. R. Sadeghipour. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition 56 (2):244–53. doi:10.1111/j.1747-0765.2009.00443.x.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station 347:1–32.
  • Kafi, M., and Z. Rahimi. 2011. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition 57 (2):341–47. doi:10.1080/00380768.2011.567398.
  • Kaya, C., H. Hirnak, D. Higgs, and K. Saltali. 2002. Supplementary calcium enhances plat growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae 93:65–74. doi:10.1016/S0304-4238(01)00313-2.
  • Keutgen, A. J., and N. Keutgen. 2003. Influence of NaCl salinity stress on fruit quality in strawberry. Acta Horticulturae 609:155–57. doi:10.17660/ActaHortic.2003.609.20.
  • Keutgen, A. J., and E. Pawelzik. 2007. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chemistry 105 (4):1487–94. doi:10.1016/j.foodchem.2007.05.033.
  • Liang, Y., Q. Shen, Z. Shen, and T. Ma. 1996. Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition 19 (1):173–83. doi:10.1080/01904169609365115.
  • Magán, J. J., M. Gallardo, R. B. Thompson, and P. Lorenzo. 2008. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricultural Water Management 95 (9):1041–55. doi:10.1016/j.agwat.2008.03.011.
  • Marodin, J. C., J. T. Resende, R. G. Morales, M. V. Faria, A. R. Trevisam, A. S. Figueiredo, and D. M. Dias. 2016. Tomato post-harvest durability and physicochemical quality depending on silicon sources and doses. Horticultura Brasileira 34 (3):361–66. doi:10.1590/S0102-05362016003009.
  • Matoh, T., P. Kairusmee, and E. Takahashi. 1986. Salt-Induced damage to rice plants and alleviation effect of silicate. Soil Science and Plant Nutrition 32 (2):295–304. doi:10.1080/00380768.1986.10557506.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–81. doi:10.1146/annurev.arplant.59.032607.092911.
  • Navarro, J. M., C. Garrido, P. Flores, and V. Martinez. 2010. The effect of salinity on yield and fruit quality of pepper grown in perlite. Spanish Journal of Agricultural Research 8 (1):142–50. doi:10.5424/sjar/2010081-1153.
  • Orsini, F., M. Alnayef, S. Bona, A. Maggio, and G. Gianquinto. 2012. Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany 81:1–10. doi:10.1016/j.envexpbot.2012.02.005.
  • Perin, E. C., R. Da Silva Messias, J. M. Borowski, R. L. Crisel, I. B. Schott, I. R. Carvalho, C. V. Rombaldi, and V. Galli. 2018. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry 271:516–26. doi:10.1016/j.foodchem.2018.07.213.
  • Qadir, M., A. S. Qureshi, and S. A. M. Cheraghi. 2008. Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degradation & Development 19 (2):214–27. doi:10.1002/ldr.818.
  • Rauser, W. E. 1995. Phytochelatins and related peptides. Plant Physiology 109:1141–49. doi:10.1104/pp.109.2.505.
  • Romero-Aranda, M. R., O. Jurado, and J. Cuartero. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163 (8):847–55. doi:10.1016/j.jplph.2005.05.010.
  • Saied, A. S., A. J. Keutgen, and G. Noga. 2005. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Scientia Horticulturae 103 (3):289–303. doi:10.1016/j.scienta.2004.06.015.
  • Savvas, D., D. Giotis, E. Chatzieustratiou, M. Bakea, and G. Patakioutas. 2009. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and Experimental Botany 65 (1):11–17. doi:10.1016/j.envexpbot.2008.07.004.
  • Savvas, D., I. Karapanos, A. Tagaris, and H. C. Passam. 2015. Effects of NaCl and silicon on the quality and storage ability of zucchini squash fruit. The Journal of Horticultural Science and Biotechnology 84 (4):381–86. doi:10.1080/14620316.2009.11512536.
  • Shetty, R., X. Fretté, B. Jensen, N. P. Shetty, J. D. Jensen, H. J. L. Jørgensen, M. A. Newman, and L. P. Christensen. 2011. Silicon-Induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the Interaction between miniature roses and the biotrophic pathogen. Podosphaera Pannosa. Plant Physiology 157 (4):2194–205. doi:10.1104/pp.111.185215.
  • Singh, R. K., and T. J. Flowers. 2010. Physiology and molecular biology of the effects of salinity on rice. In Handbook of Plant and Crop Stress, ed. M. Pessarakli, 899–939. Boca Raton: CRC Press.
  • Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folinciocalteu reagent. Methods in Enzymology 299:152–78.
  • Tesfay, S. Z., I. Bertling, and J. P. Bower. 2011. Effects of postharvest potassium silicate application on phenolics and other antioxidant systems aligned to avocado fruit quality. Postharvest Biology and Technology 60 (2):92–99. doi:10.1016/j.postharvbio.2010.12.011.
  • Toor, R. K., and G. P. Savage. 2005. Antioxidant activity in different fractions of tomatoes. Food Research International 38 (5):487–94. doi:10.1016/j.foodres.2004.10.016.
  • Van Bockhaven, J., D. De Vleesschauwer, and M. Hofte. 2012. Towards establishing broad-spectrum disease in plants: Silicon leads th way. Journal of Experimental Botany 63 (2):695–709.
  • Yaghubi, K., N. Ghaderi, Y. Vafaee, and T. Javadi. 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae 213:87–95. doi:10.1016/j.scienta.2016.10.012.
  • Yeo, A. R., S. A. Flowers, G. Rao, K. Welfare, N. Senanayake, and T. J. Flowers. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Enviroment 22:559–65. doi:10.1046/j.1365-3040.1999.00418.x.
  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167:527–33. doi:10.1016/j.plantsci.2004.04.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.