316
Views
8
CrossRef citations to date
0
Altmetric
Articles

Adverse Impact of Sodicity on Soil Functions can be Alleviated through Addition of Rice Straw Biochar

, &
Pages 2369-2383 | Received 26 Oct 2018, Accepted 14 Aug 2019, Published online: 29 Aug 2019

References

  • Alef, K. 1995. Soil respiration. In Methods in applied soil microbiology and biochemistry, ed. K. Alef and P. Nannipieri, 214–19. San Diego, California, United States: Academic Press.
  • Amonette, J. E., and S. Joseph. 2009. Characteristics of biochar: microchemical properties. In Biochar for environmental management, ed. J. Lehmann and S. Joseph, 33–52. London: Earthscan.
  • Anderson, J. M., and J. S. I. Ingram. 1993. Tropical soil biology and fertility: a handbook of methods, 45–46. Wallingford, UK: CAB International.
  • Association of Official Analytical Chemist. 2000. Official methods of analysis.Association of Official Analytical Chemist, Gaithersburg, MD, USA.
  • Assouline, S., D. Russo, A. Silber, and D. Or. 2015. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resources Research 51:3419–36. doi:10.1002/2015WR017071.
  • Baronti, S., F. P. Vaccari, F. Miglietta, C. Calzolari, E. Lugato, S. Orlandini, R. Pini, C. Zulian, and L. Genesio. 2014. Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy 53:38–44. doi:10.1016/j.eja.2013.11.003.
  • Bennett, J. M., A. Marchuk, and S. Marchuk. 2016. An alternative index to the exchangeable sodium percentage for an explanation of dispersion occurring in soils. Soil Research 54:949–57. doi:10.1071/SR15281.
  • Brewer, C. E., R. Unger, K. Schimdt-Rohr, and R. C. Brown. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Research 4:312–23. doi:10.1007/s12155-011-9133-7.
  • Chaganti, V. S. N. 2014. Evaluating the potential of biochars and composts as organic amendments to remediate a saline-sodic soil leached with reclaimed water. Doctoral dissertation, University of California, Riverside.
  • Chahal, S. S., O. P. Choudhary, and M. S. Mavi. 2017. Organic amendments decomposability influences microbial activity in saline soils. Archives of Agronomy and Soil Science 63:1–14. doi:10.1080/03650340.2017.1308491.
  • Chahal, S. S., O. P. Choudhary, and M. S. Mavi. 2018. Microbial activity is constrained by the quality of carbon and nitrogen under long-term saline water irrigation. Communications in Soil Science and Plant Analysis 49:1266–80. doi:10.1080/00103624.2018.1455852.
  • Choudhary, O. P., and M. S. Mavi. 2019. Management of sodic waters in agriculture. In Research developments in saline agriculture, ed. J. C. Dagar,, R.K. Yadav and P.C. Sharma, 785-813. Springer Nature, Singapore Ltd.
  • Dahlawi, S., A. Naeem, Z. Rengel, and R. Naidu. 2018. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment 625:320–35. doi:10.1016/j.scitotenv.2017.12.257.
  • DeLuca, T. H., M. D. MacKenzie, and M. J. Gundale. 2009. Biochar effects on soil nutrient transformation. In Biochar for environmental management, ed. J. Lehmann and S. Joseph, 251–80. London: Science and Technology Earthscan.
  • Demisie, W., and M. Zhang. 2015. Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal Agricultural Research 10:755–66. doi:10.5897/AJAR2013.8209.
  • Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar. In Biochar for environmental management: science and technology, ed. J. Lehmann and S. Joseph, 13–32. London: Earthscan.
  • Gwenzi, W., M. Muzava, F. Mapanda, and T. P. Tauro. 2016. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe. Journal of Integrative Agriculture 15:395–406. doi:10.1016/S2095-3119(15)61154-6.
  • Haefele, S. M., Y. Konboon, W. Wongboon, S. Amarante, A. A. Maarifat, E. M. Pfeiffer, and C. Knoblauch. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research 121:430–40. doi:10.1016/j.fcr.2011.01.014.
  • Jin, H. 2010. Characterization of microbial life colonizing biochar and biochar-amended soils. Doctoral dissertation, Cornell University.
  • Kameyama, K., T. Miyamoto, T. Shiono, and Y. Shinogi. 2012. Influence of sugarcane bagasse- derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality 41:1131–37. doi:10.2134/jeq2010.0453.
  • Karhu, K., T. Mattila, I. Bergström, and K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agriculture, Ecosystems & Environment 140:309–13. doi:10.1016/j.agee.2010.12.005.
  • Keeney, D. R., and D. W. Nelson. 1982. Nitrogen—Inorganic forms 1. In Methods of Soil Analysis. Part 2. Chemical and Microbiological PropertiesAgronomy 9/2, ed. R.H. Miller and D.R. Keeney, 643–98. American Society of Agronomy, Madison, WI
  • Kumar, U., V. Kumar, and J. P. Singh. 2007. Effect of different factors on hydrolysis and nitrification of urea in soils. Archives of Agronomy Soil Science 53:173–82. doi:10.1080/03650340601138818.
  • Laird, D. A., P. Fleming, D. D. Davis, R. Horton, B. Wang, and D. L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–49. doi:10.1016/j.geoderma.2010.05.013.
  • Lashari, M. S., Y. Liu, L. Li, W. Pan, J. Fu, G. Pan, J. Zheng, X. Zhang, and X. Yu. 2013. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from central China great plain. Field Crops Research 144:113–18. doi:10.1016/j.fcr.2012.11.015.
  • Lehman, J., M. C. Rilling, J. E. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota—a review. Soil Biology and Biochemistry 43:1812–36. doi:10.1016/j.soilbio.2011.04.022.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: Science and technology, 416. London: Earthscan.
  • Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’neill, J. O. Skjemstad, J. Thies, F. J. Luizao, J. Petersen, et al. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70:1719–30. doi:10.2136/sssaj2005.0383.
  • Lin, Y., P. Munroe, S. Joseph, R. Henderson, and A. Ziolkowski. 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–57. doi:10.1016/j.chemosphere.2011.12.007.
  • Luo, X., L. Wang, G. Liu, X. Wang, Z. Wang, and H. Zheng. 2016. Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecological Engineering 94:329–36. doi:10.1016/j.ecoleng.2016.06.004.
  • Major, J., M. Rondon, D. Molina, S. J. Riha, and J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333:117–28. doi:10.1007/s11104-010-0327-0.
  • Makoi, J. H., and P. A. Ndakidemi. 2007. Reclamation of sodic soils in northern Tanzania, using locally available organic and inorganic resources. African Journal of Biotechology 6:55–61.
  • Marschner, P. 2012. Marschner’s mineral nutrition of higher plants, 24–51. Boston: Academic.
  • Mavi, M. S. 2018. Evaluation of extractants to quantify dissolved organic carbon and nitrogen in dissimilar soils. Journal of the Indian Society of Soil Science 66:111–15. doi:10.5958/0974-0228.2018.00013.0.
  • Mavi, M. S., and P. Marschner. 2017. Impact of salinity on microbial activity and organic matter dynamics in soils is more closely related to osmotic potential than EC. Pedosphere 27:949–56. doi:10.1016/S1002-0160(17)60418-1.
  • Mavi, M. S., P. Marschner, D. J. Chittleborough, J. W. Cox, and J. Sanderman. 2012. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry 45:8–13. doi:10.1016/j.soilbio.2011.10.003.
  • Mavi, M. S., G. Singh, B. P. Singh, B. S. Sekhon, S. Sagi, and R. Berry. 2018. Interactive effects of rice-residue biochar and N-fertiliser on soil functions and crop biomass in contrasting soils. Journal of Soil Science and Plant Nutrition 18:41–59.
  • Miller, M. T. P., M. Duvall, and S. P. Sohi. 2014. Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science 65:173–85. doi:10.1111/ejss.12079.
  • Montes-Morán, M. A., D. Suárez, J. A. Menéndez, and E. Fuente. 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–25. doi:10.1016/j.carbon.2004.01.023.
  • Mukherjee, S., M. S. Mavi, J. Singh, and B. P. Singh. 2019. Rice-residue biochar influences phosphorus availability in soil with contrasting P status. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2019.1639153.
  • Oades, J. M. 1988. The retention of organic matter in soils. Biogeochemistry 5:35–70. doi:10.1007/BF02180317.
  • Olmo, M., A. M. Lozano, V. Barrón, and R. Villar. 2016. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield. Science of the Total Environment 562:690–700. doi:10.1016/j.scitotenv.2016.04.089.
  • Oropeza, M. R., L. Dendooven, L. Garza-Avendano, V. Souza, L. Philippot, and N. Cabirol. 2010. Effects of biosolids application on nitrogen dynamics and microbial structure in a saline–sodic soil of the former Lake Texcoco (Mexico). Bioresource Technology 101:2491–98. doi:10.1016/j.biortech.2009.10.088.
  • Pathak, H., and D. L. N. Rao. 1998. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biology and Biochemisty 30:695–702. doi:10.1016/S0038-0717(97)00208-3.
  • Paz-Ferreiro, J., H. Lu, S. Fu, A. Méndez, and G. Gascó. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75. doi:10.5194/se-5-65-2014.
  • Qadir, M., J. D. Oster, S. Schubert, A. D. Nobel, and K. L. Sahrawat. 2007. Phytoremediation of sodic and saline sodic soils. Advances in Agronomy 96:197–247.
  • Raison, R. J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant and Soil 51:73–108. doi:10.1007/BF02205929.
  • Rengasamy, P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany 57:1017–23. doi:10.1093/jxb/erj108.
  • Richards, L. 1954. Diagnosis and improvement ofsaline and alkali Soils. In AgriculturalHandbook No. 60, ed. US Department of Agriculture, 123–34.Washington, USA.
  • Rietz, D. N., and R. J. Haynes. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry 35:845–54. doi:10.1016/S0038-0717(03)00125-1.
  • Sajuni, N. R., A. L. Ahmad, and V. M. Vadivelu. 2010. Effect of filter media characteristics, pH and temperature on the ammonia removal in the wastewater. Journal of Applied Science 10:1146–50. doi:10.3923/jas.2010.1146.1150.
  • Setia, R., P. Marschner, J. Baldock, D. Chittleborough, and V. Verma. 2011. Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biology and Biochemistry 43:667–74. doi:10.1016/j.soilbio.2010.12.004.
  • Singh, B. P., and A. L. Cowie. 2014. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Scientific Reports 4:3687. doi:10.1038/srep03687.
  • Singh, B. P., A. L. Cowie, and R. J. Smernik. 2012a. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environment Science & Technology 46:1770–78. doi:10.1021/es302545b.
  • Singh, G., and M. S. Mavi. 2018. Impact of addition of different rates of rice-residue biochar on C and N dynamics in texturally diverse soils. Archives of Agronomy and Soil Science 64:1419–31. doi:10.1080/03650340.2018.1439161.
  • Singh, K. 2016. Microbial and enzyme activities of saline and sodic soils. Land Degradation & Development 27:706–18. doi:10.1002/ldr.2385.
  • Singh, K., V. C. Pandey, B. Singh, and R. R. Singh. 2012b. Ecological restoration of degraded sodic lands through cropping and afforestation. Ecological Engineering 43:70–80. doi:10.1016/j.ecoleng.2012.02.029.
  • Singh, R., M. S. Mavi, and O. P. Choudhary. 2019. Saline soils can be ameliorated by adding biochar generated from rice-residue waste. Clean – Soil Air Water 47:1700656. doi:10.1002/clen.v47.2.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy 105:47–82.
  • Tinwala, F., P. Mohanty, S. Parmar, A. Patel, and K. K. Pant. 2015. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization. Bioresource Technology 188:258–64. doi:10.1016/j.biortech.2015.02.006.
  • Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass Carbon. Soil Biology and Biochemistry 19:703–07. doi:10.1016/0038-0717(87)90052-6.
  • Wang, L., X. Sun, S. Li, T. Zhang, W. Zhang, and P. Zhai. 2014. Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth. PloS One 9:89.
  • Woolf, D., J. E. Amonette, F. A. Street-Perrott, J. Lehman, and S. Joseph. 2010. Sustainable biochar on mitigate global climate change. Nature Communications 1:56. doi:10.1038/ncomms1053.
  • Yazdanpanah, N., M. Mahmoodabadi, and A. Cerdà. 2016. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 266:58–65. doi:10.1016/j.geoderma.2015.11.032.
  • Yu, L., J. Tang, R. Zhang, Q. Wu, and M. Gong. 2010. Effects of biochar application on soil methane emission at different soil moisture levels. Biology and Fertility of Soils 49:119–28. doi:10.1007/s00374-012-0703-4.
  • Zheng, W., B. K. Sharma, and N. Rajagopalan. 2010. Using biochar as a soil amendment for sustainable agriculture. Illinois Sustainable Technology Center, University of Illinois, Urbana-Champaign.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.