430
Views
25
CrossRef citations to date
0
Altmetric
Articles

Synergistic Use of Plant Growth-Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi, and Spectral Properties for Improving Nutrient Use Efficiencies in Wheat (Triticum aestivum L.)

, , , , , , & show all
Pages 14-27 | Received 27 Sep 2019, Accepted 15 Oct 2019, Published online: 22 Nov 2019

References

  • Adholeya, A., P. Tiwari, and R. Singh. 2005. Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In vitro culture of mycorrhizas, ed. S. Declerck, D. G. Strullu, and A. Fortin, 315–38. Berlin, Heidelberg: Springer.
  • Anonymous. 2011. Package of practices for crops of Punjab, Rabi 2011–12. Ludhiana, India: Punjab Agricultural University.
  • Artursson, V., R. D. Finlay, and J. K. Jansson. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8:1–10. doi:10.1111/EMI.2006.8.issue-1.
  • Benizri, E., E. Baudoin, and A. Guckert. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology 11:557–74. doi:10.1080/09583150120076120.
  • Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49:637–44. doi:10.1016/j.pedobi.2005.06.003.
  • Cappuccino, J. G., and N. Sherman. 1987. Microbiology – a laboratory manual. Menlo Park, California: Benjamin/Cummings Publ. Company, Inc.
  • CropStat. 2009. Cropstat 7.2 for windows tutorial manual. Crop research informatics laboratory. Philippines: International Rice Research Institute.
  • Dilz, K. 1988. Efficiency of uptake and utilization of fertilizer nitrogen by plants. In Nitrogen efficiency in agricultural soils, ed. D. S. Jenkinson and K. A. Smith, 1–26. London: Elsevier Applied Science.
  • Egerton-Warburton, L. M., and E. B. Allen. 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10:484–96. doi:10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2.
  • FAO. 2018. Food and Agriculture Organization of the United Nations. FAOSTAT, http://www.fao.org/faostat/en/#data/QC.
  • Gohre, V., and U. Paszkowski. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–22. doi:10.1007/s00425-006-0225-0.
  • Hagh, E. D., B. Mirshekari, M. R. Ardakani, F. Farahvash, and F. Rejali. 2016. Optimizing phosphorus use in sustainable maize cropping via mycorrhizal inoculation. Journal of Plant Nutrition 39:1348–56. doi:10.1080/01904167.2015.1086797.
  • Hegde, D. M., B. S. Dwivedi, and S. N. S. Babu. 1999. Biofertilizers for cereal production in India - a review. Indian Journal of Agricultural Science 69:73–83.
  • Hurek, T., L. L. Handley, B. Reinhold-Hurek, and Y. Piché. 2002. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions 15:233–42. doi:10.1094/MPMI.2002.15.3.233.
  • IFA. 2018. International fertilizer association. Paris (France): IFASTAT. https://www.ifastat.org/databases/plant-nutrition.
  • Jackson, M. L. 1987. Soil chemical analysis. New Delhi (India): Prentice Hall of India.
  • Khan, M. S., and A. Zaidi. 2007. Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turkish Journal of Agriculture and Forestry 31:355–62.
  • Kim, K. Y., D. Jordan, and G. A. McDonald. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: Effect of carbon sources. Soil Biology and Biochemistry 30:995–1003. doi:10.1016/S0038-0717(98)00007-8.
  • Kloepper, J. W., J. Leong, M. Teintze, and M. N. Schroth. 1980. Enhanced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–86. doi:10.1038/286885a0.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Lugtenberg, B., and F. Kamilova. 2009. Plant growth promoting rhizobacteria. Annual Review of Microbiology 63:541–56. doi:10.1146/annurev.micro.62.081307.162918.
  • Mäder, P., F. Kaiser, A. Adholeya, R. Singh, H. S. Uppal, A. K. Sharma, R. Srivastava, V. Sahai, M. Aragno, A. Wiemken, et al. 2011. Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biology and Biochemistry 43:609–19. doi:10.1016/j.soilbio.2010.11.031.
  • McGonigle, T. P. 1988. A Numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Functional Ecology 2:473–78. doi:10.2307/2389390.
  • Merwin, H. D., and M. Peech. 1950. Exchangeability of soil potassium in sand, silt and clay fractions as influenced by the nature of complementary exchangeable cations. Soil Science Society of America Proceedings 15:125–28. doi:10.2136/sssaj1951.036159950015000C0026x.
  • Minaxi, J. S., S. Chandra, and L. Nain. 2013. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition 2:511–25.
  • Novoa, R., and R. S. Loomis. 1981. Nitrogen and plant production. Plant and Soil 58:177–204. doi:10.1007/BF02180053.
  • Oehl, F., E. Sieverding, K. Ineichen, P. Mäder, T. Boller, and A. Wiemken. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology 69:2816–24. doi:10.1128/AEM.69.5.2816-2824.2003.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Washington, DC (Circular 939): US Department of Agriculture.
  • Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research 125:35–48. doi:10.1016/j.fcr.2011.08.005.
  • Peñuelas, J., J. Gamon, A. Freeden, J. Merino, and C. Field. 1994. Reflectance indices associated with physiological changes in nitrogen and water limited sunflower leaves. Remote Sensing of Environment 48:135–46. doi:10.1016/0034-4257(94)90136-8.
  • Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158–61. doi:10.1016/S0007-1536(70)80110-3.
  • Ponmurugan, P., and C. Gopi. 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilising bacteria. African Journal of Biotechnology 5:340–50.
  • Raun, W. R., G. V. Johnson, M. L. Stone, J. B. Solie, E. V. Lukina, and W. E. Thomason. 2001. In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal 93:131–38. doi:10.2134/agronj2001.931131x.
  • Roesti, D., R. Gaur, B. N. Johri, G. Imfeld, S. Sharma, K. Kawaljeet, and M. Aragno. 2006. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry 38:1111–20. doi:10.1016/j.soilbio.2005.09.010.
  • Sánchez-Blanco, M. J., T. Fernández, M. A. Morales, A. Morte, and J. J. Alarcón. 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology 161:675–82. doi:10.1078/0176-1617-01191.
  • Sharma, A., U. S. Rawat, and B. K. Yadav. 2012. Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. IRSN Agronomy Article ID 234656: 1–9.
  • Singh, H. P., and T. A. Singh. 1993. The interaction of rock phosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan Mollisol. Mycorrhiza 4:37–43. doi:10.1007/BF00203249.
  • Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis, 605. 3rd ed. New York/London/Burlington/San Diego: Elsevier/Academic.
  • Souchie, E. L., J. Orivaldo, O. J. Saggin-Junior, E. M. R. Silva, E. F. C. Campello, R. Azcon, and J. M. Barea. 2006. Communities of P solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty RJ-Brazil. Anais Da Academia Brasileira De Ciências 78:183–93. doi:10.1590/S0001-37652006000100016.
  • SPSS. 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.
  • Suri, V. K., A. K. Choudhary, G. Chander, T. S. Verma, M. K. Gupta, and N. Dutt. 2011. Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic alfisol. Communications in Soil Science and Plant Analysis 42:2265–73. doi:10.1080/00103624.2011.602451.
  • Tabatabai, M. A. 1982. Soil enzymes. In Methods of soil analysis. Part 2, Chemical and microbiological properties, ed. A. L. Page and D. R. Keeney, 903–48. Madison, Wisconsin: Soil Science Society of America.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-Nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1:301–07. doi:10.1016/0038-0717(69)90012-1.
  • Thenkabail, P. S., R. B. Smith, and E. De Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71:158–82. doi:10.1016/S0034-4257(99)00067-X.
  • Treseder, K. K., and K. M. Turner. 2007. Glomalin in ecosystems. Soil Science Society of America Journal 71:1257–66. doi:10.2136/sssaj2006.0377.
  • Van Diepen, L. T. A., E. A. Lilleskov, K. S. Pregitzer, and R. M. Miller. 2007. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist 176:175–83. doi:10.1111/j.1469-8137.2007.02150.x.
  • Varinderpal-Singh, B.-S., Y. Singh, H. S. Thind, G. Singh, S. Kaur, A. Kumar, and M. Vashistha. 2012. Establishment of threshold leaf colour greenness for need-based fertilizer nitrogen management in irrigated wheat (Triticum aestivum L.) using leaf colour chart. Field Crops Research 130:109–19. doi:10.1016/j.fcr.2012.02.005.
  • Varinderpal-Singh, B.-S., S. Yadvinder, H. S. Thind, and R. K. Gupta. 2010. Need based nitrogen management using the chlorophyll meter and leaf colour chart in rice and wheat in South Asia: A review. Nutrient Cycling in Agroecosystems 88:361–80. doi:10.1007/s10705-010-9363-7.
  • Varinderpal-Singh, B.-S., H. S. Yadvinder-Singh, G. S. Thind, S. K. Buttar, S. K. Meharban-Singh, and A. Bhowmik. 2017. Site-specific fertilizer nitrogen management for timely sown irrigated wheat (Triticum aestivum L. and Triticum turgidum L. ssp. durum) genotypes. Nutrient Cycling in Agroecosystems 109:1–16. doi:10.1007/s10705-017-9860-z.
  • Varinderpal-Singh, B.-S. H., S. Thind, Y. Singh, R. K. Gupta, S. Singh, M. Singh, S. Kaur, M. Singh, J. S. Brar, A. Singh, et al. 2014. Evaluation of leaf colour chart for need-based nitrogen management in rice, maize and wheat in north-western India. Journal Research Punjab Agricultural University 51:239–45.
  • Varinderpal-Singh, D., Yadvinder-Singh, Bijay-Singh, Baldev-Singh, R. K. Gupta, Jagmohan-Singh, J. K. Ladha, and V. Balasubramanian. 2007. Performance of site-specific nitrogen management for irrigated transplanted rice in northwestern India. Archives of Agronomy and Soil Science 53:567–79. doi:10.1080/03650340701568971.
  • Walkley, A., and I. A. Black. 1934. An examination of DEGTJAREFF method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29–38. doi:10.1097/00010694-193401000-00003.
  • Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52:487–511. doi:10.1093/jxb/52.suppl_1.487.
  • Wu, Q. S., and R. X. Xia. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163:417–25. doi:10.1016/j.jplph.2005.04.024.
  • Xu, P., L. Z. Liang, X. Y. Dong, J. Xu, P. K. Jiang, and R. F. Shen. 2014. Response of soil phosphorus required for maximum growth of Asparagus officinalis L. to inoculation of arbuscular mycorrhizal fungi. Pedosphere 24:776–82. doi:10.1016/S1002-0160(14)60064-3.
  • Yoshida, S., D. A. Forno, D. H. Cock, and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice. 3rd ed. Los Banos, Laguna, Phillipines: IRRI.
  • Zehnder, G. W., J. F. Murphy, E. J. Sikora, and J. W. Kloepper. 2001. Application of rhizobacteria for induced resistance. European Journal of Plant Pathology 107:39–50. doi:10.1023/A:1008732400383.
  • Zeng, X., B. Han, F. Xu, J. Huang, H. Cai, and L. Shi. 2012. Effects of modified fertilization technology on the grain yield and nitrogen use efficiency of midseason rice. Field Crops Research 137:203–12. doi:10.1016/j.fcr.2012.08.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.