546
Views
33
CrossRef citations to date
0
Altmetric
Articles

Effects of different corn straw amendments on humus composition and structural characteristics of humic acid in black soil

, , , , &
Pages 107-117 | Received 08 Aug 2019, Accepted 04 Nov 2019, Published online: 02 Dec 2019

References

  • Agegnehu, G., A. M. Bass, P. N. Nelson, and M. I. Bird. 2016. Benefits of biochar, compost and biochar–Compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment 543:295–306. doi:10.1016/j.scitotenv.2015.11.054.
  • Alluvione, F., N. Fiorentino, C. Bertora, L. Zavattaro, M. Fagnano, F. Q. Chiarandà, and C. Grignani. 2013. Short-term crop and soil response to C-friendly strategies in two contrasting environments. European Journal of Agronomy 45:114–23. doi:10.1016/j.eja.2012.09.003.
  • Bayer, C. M. N. L., J. Mielniczuk, C. A. Ceretta, and C. A. Ceretta. 2000. Effect of no-till cropping systems on SOM in a sandy clay loam Acrisol from Southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil and Tillage Research 53:95–104. doi:10.1016/S0167-1987(99)00088-4.
  • Chen, J., M. Heiling, C. Resch, M. Mbaye, R. Gruber, and G. Dercon. 2018. Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agriculture, Ecosystems & Environment 265:123–31. doi:10.1016/j.agee.2018.06.005.
  • Cui, T., Z. Li, and S. Wang. 2017. Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. Journal of Soils and Sediments 17 (10):2391–99. doi:10.1007/s11368-017-1704-6.
  • Dou, S. 2010. Soil organic matter. Beijing: Science Press. In Chinese.
  • Dou, S. 2017. Improving subsoil fertility through a new technology of continuous in belt and deep incorporation of corn stover. Journal of Plant Nutrition and Fertilizer 23 (6):1670–75. In Chinese. doi:10.11674/zwyf.17316.
  • Dou, S., J. Zhang, and K. Li. 2008. Effect of organic matter applications on 13C‐NMR spectra of humic acids of soil. European Journal of Soil Science 59 (3):532–39. doi:10.1111/j.1365-2389.2007.01012.x.
  • El-Naggar, A., A. H. El-Naggar, S. M. Shaheen, B. Sarkar, S. X. Chang, D. C. W. Tsang, J. Rinklebe, and Y. S. Ok. 2019. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. Journal of Environmental Management 241:458–67. doi:10.1016/j.jenvman.2019.02.044.
  • Fungo, B., J. Lehmann, K. Kalbitz, M. Tenywa, M. Thionģo, and H. Neufeldt. 2017. Emissions intensity and carbon stocks of a tropical Ultisol after amendment with Tithonia green manure, urea and biochar. Field Crops Research 209:179–88. doi:10.1016/j.fcr.2017.05.013.
  • Giagnoni, L., A. Maienza, S. Baronti, F. P. Vaccari, L. Genesio, C. Taiti, T. Martellini, R. Scodellini, A. Cincinelli, and C. Costa. 2019. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 344:127–36. doi:10.1016/j.geoderma.2019.03.011.
  • Guan, S., S.-J. Liu, R.-Y. Liu, J.-J. Zhang, J. Ren, H.-G. Cai, and X.-X. Lin. 2019. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. doi:10.1016/S2095-3119(19)62643-2.
  • Hartley, W., P. Riby, and J. Waterson. 2016. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. Journal of Environmental Management 181:770–78. doi:10.1016/j.jenvman.2016.07.023.
  • Ingelmo, F., M. J. Molina, M. D. Soriano, A. Gallardo, and L. Lapeña. 2012. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost. Journal of Environmental Management 95:S104–S109. doi:10.1016/j.jenvman.2011.04.015.
  • Jindo, K., H. Mizumoto, Y. Sawada, M. A. Sanchez-Monedero, and T. Sonoki. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11 (23):6613–21. doi:10.5194/bg-11-6613-2014.
  • Jindo, K., M. A. Sánchez-Monedero, K. Matsumoto, and T. Sonoki. 2019. The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost. Agronomy 9 (5):248. doi:10.3390/agronomy9050248.
  • Kuwatsuka, S., A. Watanabe, K. Itoh, and S. Arai. 1992. Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Science and Plant Nutrition 38 (1):23–30. doi:10.1080/00380768.1992.10416948.
  • Leng, L., X. Xu, L. Wei, L. Fan, H. Huang, J. Li, Q. Lu, J. Li, and W. Zhou. 2019. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Science of the Total Environment. doi:10.1016/j.scitotenv.2019.01.298.
  • Li, X., H. Li, L. Yang, and Y. Ren. 2018. Assessment of soil quality of croplands in the Corn Belt of Northeast China. Sustainability 10 (1):248. doi:10.3390/su10010248.
  • Liu, H., Y. Wang, D. Sun, H. Jiang, and F. Yang. 2018. Insight into the correlation between biochar amendment and shift in bacterial community four years after a single incorporation in soybean/maize-planted soils in north-eastern China. doi:10.1139/cjm-2018-0366.
  • Lorenz, K., and R. Lal. 2005. The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Advances in Agronomy 88:35–66.
  • Martin-Neto, L., R. Rosell, and G. Sposito. 1998. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence. Geoderma 81 (3–4):305–11. doi:10.1016/S0016-7061(97)00089-X.
  • Mazzilli, S. R., A. R. Kemanian, O. R. Ernst, R. B. Jackson, and G. Pineiro. 2015. Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops. Soil Biology and Biochemistry 85:22–30. doi:10.1016/j.soilbio.2015.02.014.
  • Pratt, M. R., W. E. Tyner, D. J. Muth Jr, and E. J. Kladivko. 2014. Synergies between cover crops and corn stover removal. Agricultural Systems 130:67–76. doi:10.1016/j.agsy.2014.06.008.
  • Simonetti, G., O. Francioso, S. Nardi, A. Berti, E. Brugnoli, F. Morari, and E. Lugato. 2012. Characterization of humic carbon in soil aggregates in a long-term experiment with manure and mineral fertilization. Soil Science Society of America Journal 76 (3):880–90. doi:10.2136/sssaj2011.0243.
  • Song, G., E. H. Novotny, J.-D. Mao, and M. H. Hayes. 2017. Characterization of transformations of maize residues into soil organic matter. Science of the Total Environment 579:1843–54. doi:10.1016/j.scitotenv.2016.11.169.
  • Song, X., Y. Li, X. Yue, Q. Hussain, J. Zhang, Q. Liu, S. Jin, and D. Cui. 2019. Effect of cotton straw-derived materials on native soil organic carbon. Science of the Total Environment 663:38–44. doi:10.1016/j.scitotenv.2019.01.311.
  • Sui, Y., J. Gao, C. Liu, W. Zhang, Y. Lan, S. Li, J. Meng, Z. Xu, and L. Tang. 2016. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Science of the Total Environment 544:203–10. doi:10.1016/j.scitotenv.2015.11.079.
  • Tan, Z., C. S. K. Lin, X. Ji, and T. J. Rainey. 2017. Returning biochar to fields: A review. Applied Soil Ecology 116:1–11. doi:10.1016/j.apsoil.2017.03.017.
  • Weber, K., and P. Quicker. 2018. Properties of biochar. Fuel 217:240–61. doi:10.1016/j.fuel.2017.12.054.
  • Xu, X., T. An, J. Zhang, Z. Sun, S. Schaeffer, and J. Wang. 2019. Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil. Geoderma 2019 (v.337):622–29. doi:10.1016/j.geoderma.2018.08.018.
  • Yang, X., J. Meng, Y. Lan, W. Chen, T. Yang, J. Yuan, S. Liu, and J. Han. 2017. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agriculture, Ecosystems & Environment 240:24–31. doi:10.1016/j.agee.2017.02.001.
  • Yu, H., W. Zou, J. Chen, H. Chen, Z. Yu, J. Huang, H. Tang, X. Wei, and B. Gao. 2019. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management 232:8–21. doi:10.1016/j.jenvman.2018.10.117.
  • Zhang, J., H. Cai, C. Zhang, J. Ren, and L. Wang. 2015. First characterization of humic-like substances isolated from maize straw biochar. Fresen. Environ. Bull 24:1815–21.
  • Zhang, J., J. Wang, T. An, D. Wei, F. Chi, B. Zhou, and J. Paz-Ferreiro. 2017a. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil. PLoS One 12 (11):e0186918. doi:10.1371/journal.pone.0186918.
  • Zhang, J. J., Y. Wei, J. Liu, J. Yuan, Y. Liang, J. Ren, and H. Cai. 2019. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil and Tillage Research 190:1–9. doi:10.1016/j.still.2019.02.014.
  • Zhang, M., G. Cheng, H. Feng, B. Sun, Y. Zhao, H. Chen, J. Chen, M. Dyck, X. Wang, and J. Zhang. 2017b. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environmental Science and Pollution Research 24 (11):10108–20. doi:10.1007/s11356-017-8505-8.
  • Zhao, S., N. Ta, Z. Li, Y. Yang, X. Zhang, D. Liu, A. Zhang, and X. Wang. 2018. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions. Applied Soil Ecology 123:484–93. doi:10.1016/j.apsoil.2017.09.007.
  • Zhao, S.-X., N. Ta, and X.-D. Wang. 2017. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 10 (9):1293. doi:10.3390/en10091293.
  • Zimmerman, A. R., B. Gao, and M.-Y. Ahn. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43 (6):1169–79. doi:10.1016/j.soilbio.2011.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.