152
Views
4
CrossRef citations to date
0
Altmetric
Article

Converting Conventional Agriculture to Poplar Bioenergy Crops: Soil Chemistry

&
Pages 364-379 | Received 26 Aug 2019, Accepted 16 Dec 2019, Published online: 06 Jan 2020

References

  • Adler, P. R., S. J. Del Grosso, and W. J. Parton. 2007. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications 17 (3):675–91. doi:10.1890/05-2018.
  • Andraski, B. J. 1991. Balloon and core sampling for determining bulk density of alluvial desert soil. Soil Science Society of America Journal 55 (4):1188–90. doi:10.2136/sssaj1991.03615995005500040048x.
  • Aronsson, P., H. Rosenqvist, and I. Dimitriou. 2014. Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in sweden on yield and economy. Bioenergy Research 7 (3):993–1001. doi:10.1007/s12155-014-9435-7.
  • Aubrey, D., D. Coyle, and M. Coleman. 2012. Functional groups show distinct differences in nitrogen cycling during early stand development: Implications for forest management. Plant and Soil 351:219–36. doi:10.1007/s11104-011-0946-0.
  • Binkley, D., and R. Fisher. 2012. Ecology and management of forest soils, 347. ed.^eds. Chicester: Wiley.
  • Blanco-Canqui, H., C. A. Shapiro, C. S. Wortmann, R. A. Drijber, M. Mamo, T. M. Shaver, and R. B. Ferguson. 2013. Soil organic carbon: The value to soil properties. Journal of Soil and Water Conservation 68 (5):129A–134A. doi:10.2489/jswc.68.5.129A.
  • Bonin, C., and R. Lal. 2012. Chapter one - Agronomic and ecological implications of biofuels. In Advances in agronomy, ed. D. L. Sparks, 1–50. Boston: Academic Press.
  • Brandao, M., L. M. I. Canals, and R. Clift. 2011. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass & Bioenergy 35 (6):2323–36. doi:10.1016/j.biombioe.2009.10.019.
  • Buchholz, T., V. A. Luzadis, and T. A. Volk. 2009. Sustainability criteria for bioenergy systems: Results from an expert survey. Journal of Cleaner Production 17:S86–S98. doi:10.1016/j.jclepro.2009.04.015.
  • Chimento, C., M. Almagro, and S. Amaducci. 2016. Carbon sequestration potential in perennial bioenergy crops: The importance of organic matter inputs and its physical protection. Global Change Biology Bioenergy 8 (1):111–21. doi:10.1111/gcbb.12232.
  • Coleman, M. D., J. G. Isebrands, D. N. Tolsted, and V. R. Tolbert. 2004. Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environmental Management 33:S299–S308. doi:10.1007/s00267-003-9139-9.
  • Coyle, D. R., D. P. Aubrey, and M. D. Coleman. 2016. Growth responses of narrow or broad site adapted tree species to a range of resource availability treatments after a full harvest rotation. Forest Ecology and Management 362:107–19. doi:10.1016/j.foreco.2015.11.047.
  • Cunniff, J., S. J. Purdy, T. J. P. Barraclough, M. Castle, A. L. Maddison, L. E. Jones, I. F. Shield, A. S. Gregory, and A. Karp. 2015. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass and Bioenergy 80:114–27. doi:10.1016/j.biombioe.2015.04.020.
  • Dauber, J., M. B. Jones, and J. C. Stout. 2010. The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2 (6):289–309. doi:10.1111/gcbb.2010.2.issue-6.
  • Dickmann, D. I., J. G. Isebrands, J. E. Eckenwalder, and J. Richardson. 2001. Poplar culture in North America. Ottawa, Canada: NRC Research Press.
  • Dillen, S. Y., S. N. Djomo, N. Al Afas, S. Vanbeveren, and R. Ceulemans. 2013. Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass and Bioenergy 56:157–65. doi:10.1016/j.biombioe.2013.04.019.
  • Dimitriou, I., and B. Mola-Yudego. 2017a. Impact of populus plantations on water and soil quality. BioEnergy Research 10 (3):750–59. doi:10.1007/s12155-017-9836-5.
  • Dimitriou, I., and B. Mola-Yudego. 2017b. Nitrogen fertilization of poplar plantations on agricultural land: Effects on diameter increments and leaching. Scandinavian Journal of Forest Research 32 (8):700–07. doi:10.1080/02827581.2016.1264622.
  • Dimitriou, I., B. Mola-Yudego, P. Aronsson, and J. Eriksson. 2012. Changes in organic carbon and trace elements in the soil of willow short-rotation coppice plantations. Bioenergy Research 5 (3):563–72. doi:10.1007/s12155-012-9215-1.
  • Don, A., B. Osborne, A. Hastings, U. Skiba, M. S. Carter, J. Drewer, H. Flessa, A. Freibauer, N. Hyvonen, M. B. Jones, et al. 2012. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. Global Change Biology Bioenergy 4 (4):372–91. doi:10.1111/j.1757-1707.2011.01116.x.
  • Fortier, J., B. Truax, D. Gagnon, and F. Lambert. 2015. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. Journal of Environmental Management 154:333–45. doi:10.1016/j.jenvman.2015.02.039.
  • Garten, C. T., S. D. Wullschleger, and A. T. Classen. 2011. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass & Bioenergy 35 (1):214–26. doi:10.1016/j.biombioe.2010.08.013.
  • Georgiadis, P., A. Taeroe, I. Stupak, S. Kepfer-Rojas, W. X. Zhang, R. P. Bastos, and K. Raulund-Rasmussen. 2017a. Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar. Forest Ecology and Management 397:18–26. doi:10.1016/j.foreco.2017.04.020.
  • Georgiadis, P., L. Vesterdal, I. Stupak, and K. Raulund‐Rasmussen. 2017b. Accumulation of soil organic carbon after cropland conversion to short-rotation willow and poplar. GCB Bioenergy 9 (8):1390–401. doi:10.1111/gcbb.12416.
  • Gikas, G. D., V. A. Tsihrintzis, and D. Sykas. 2016. Effect of trees on the reduction of nutrient concentrations in the soils of cultivated areas. Environmental Monitoring and Assessment 188 (6):327. doi:10.1007/s10661-016-5325-0.
  • Grigal, D. F., and E. D. Vance. 2000. Influence of soil organic matter on forest productivity. New Zealand Journal of Forestry Science 30:169–205.
  • Guo, L. B., and R. M. Gifford. 2002. Soil carbon stocks and land use change: A meta analysis. Global Change Biology 8 (4):345–60. doi:10.1046/j.1354-1013.2002.00486.x.
  • Hansen, E. A. 1993. Soil carbon sequestration beneath hybrid poplar plantations in the north central United States. Biomass and Bioenergy 5:431–36. doi:10.1016/0961-9534(93)90038-6.
  • Haynes, R. J. 1990. Active ion uptake and maintenance of cation-anion balance - A critical-examination of their role in regulating rhizosphere pH. Plant and Soil 126 (2):247–64. doi:10.1007/BF00012828.
  • Isebrands, J. G., and J. Richardson. 2014. Poplars and willows: Trees for society and the environment, 634. ed.^eds. Rome, Italy: UN Food and Agriculture Organization and Centre for Agriculture and Bioscience International.
  • Jug, A., F. Makeschin, K. E. Rehfuess, and C. Hofmann-Schielle. 1999. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. Forest Ecology and Management 121 (1–2):85–99. doi:10.1016/S0378-1127(98)00558-1.
  • Kahle, P., C. Baum, B. Boelcke, J. Kohl, and R. Ulrich. 2010. Vertical distribution of soil properties under short-rotation forestry in Northern Germany. Journal of Plant Nutrition and Soil Science 173 (5):737–46. doi:10.1002/jpln.v173:5.
  • Karlen, D. L., S. S. Andrews, and J. W. Doran. 2001. Soil quality: Current concepts and applications. Advances in Agronomy 74:1–40.
  • Lafleur, B., D. Pare, Y. Claveau, E. Thiffault, and N. Belanger. 2013. Influence of afforestation on soil: The case of mineral weathering. Geoderma 202:18–29. doi:10.1016/j.geoderma.2013.03.004.
  • Langeveld, H., P. M. Quist-Wessel, I. Dimitriou, P. Aronsson, C. Baum, U. Schulz, A. Bolte, S. Baum, J. Koehn, M. Weih, et al. 2012. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. Bio Energy Research. 5(3):621-635. DOI: 10.1007/s12155-012-9235-x
  • Lemus, R., and R. Lal. 2005. Bioenergy crops and carbon sequestration. Critical Reviews in Plant Sciences 24 (1):1–21. doi:10.1080/07352680590910393.
  • Littell, R. C., G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. 1996. SAS system for mixed models. Cary, NC, USA: SAS Institute, Inc.
  • Louette, G., D. Maes, J. R. M. Alkemade, L. Boitani, B. de Knegt, J. Eggers, A. Falcucci, E. Framstad, W. Hagemeijer, S. M. Hennekens, et al. 2010. BioScore–Cost-effective assessment of policy impact on biodiversity using species sensitivity scores. Journal for Nature Conservation 18 (2):142–48. doi:10.1016/j.jnc.2009.08.002.
  • Makeschin, F. 1994. Effects of energy forestry on soils. Biomass and Bioenergy 6 (1):63–79. doi:10.1016/0961-9534(94)90086-8.
  • Mann, L., and V. Tolbert. 2000. Soil sustainability in renewable biomass plantings. Ambio 29 (8):492–98. doi:10.1579/0044-7447-29.8.492.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. San Diego: Academic Press.
  • Matthews, R. B., and P. Grogan. 2001. Potential C-sequestration rates under short-rotation coppiced willow and Miscanthus biomass crops: A modelling study. Aspects of Applied Biology (65):303–12.
  • McBride, A. C., V. H. Dale, L. M. Baskaran, M. E. Downing, L. M. Eaton, R. A. Efroymson, C. T. Garten, K. L. Kline, H. I. Jager, P. J. Mulholland, et al. 2011. Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators 11 (5):1277–89. doi:10.1016/j.ecolind.2011.01.010.
  • Monserud, R. A. 2002. Large-scale management experiments in the moist maritime forests of the Pacific Northwest. Landscape and Urban Planning 59 (3):159–80. doi:10.1016/S0169-2046(02)00013-0.
  • Murphy, R., J. Woods, M. Black, and M. McManus. 2011. Global developments in the competition for land from biofuels. Food Policy 36:S52–S61. doi:10.1016/j.foodpol.2010.11.014.
  • Qiao, Y., J. Fan, and Q. Wang. 2016. Effects of farmland shelterbelts on accumulation of soil nitrate in agro-ecosystems of an oasis in the Heihe River Basin, China. Agriculture, Ecosystems & Environment 235:182–92. doi:10.1016/j.agee.2016.10.021.
  • Rollwagen, B. A., and R. J. Zasoski. 1988. Nitrogen-source effects on rhizosphere pH and nutrient accumulation by Pacific Northwest conifers. Plant and Soil 105 (1):79–86. doi:10.1007/BF02371145.
  • Rytter, R. M. 2016. Afforestation of former agricultural land with Salicaceae species - Initial effects on soil organic carbon, mineral nutrients, C:N and pH. Forest Ecology and Management 363:21–30. doi:10.1016/j.foreco.2015.12.026.
  • Sarauer, J. L., and M. D. Coleman. 2018. Converting conventional agriculture to poplar bioenergy crops: Soil greenhouse gas flux. Scandinavian Journal of Forest Research 33 (8):781–92. doi:10.1080/02827581.2018.1506501.
  • Sartori, F., R. Lal, M. H. Ebinger, and J. A. Eaton. 2007a. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture Ecosystems & Environment 122 (3):325–39. doi:10.1016/j.agee.2007.01.026.
  • Sartori, F., R. Lal, M. H. Ebinger, and R. O. Miller. 2007b. Tree species and wood ash affect soil in Michigan’s Upper Peninsula. Plant and Soil 298 (1–2):125–44. doi:10.1007/s11104-007-9345-y.
  • Shoemaker, H. E., E. O. McLean, and P. F. Pratt. 1961. Buffer methods for determination of lime requirements of soils with appreciable amount of exchangeable aluminum. Soil Science Society of America, Proceedings 25:274–77. doi:10.2136/sssaj1961.03615995002500040014x.
  • Smith, P., K. W. T. Goulding, K. A. Smith, D. S. Powlson, J. U. Smith, P. Falloon, and K. Coleman. 2000. Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management 16 (4):251–59. doi:10.1111/sum.2000.16.issue-4.
  • Stanton, B., J. Eaton, J. Johnson, D. Rice, B. Schuette, and B. Moser. 2002. Hybrid poplar in the Pacific Northwest - The effects of market-driven management. Journal of Forestry 100 (4):28–33.
  • Sun, S. Q., J. S. Bhatti, R. S. Jassal, S. X. Chang, C. Arevalo, T. A. Black, and D. Sidders. 2015. Stand age and productivity control soil carbon dioxide efflux and organic carbon dynamics in poplar plantations. Soil Science Society of America Journal 79 (6):1638–49. doi:10.2136/sssaj2015.06.0233.
  • Tolbert, V. R., D. A. Mays, A. Houston, D. D. Tyler, C. H. Perry, K. E. Brooks, F. C. Thornton, B. R. Bock, J. D. Joslin, C. C. Trettin, et al. 15–19 October 2000a. Ensuring environmentally sustainable production of dedicated biomass feedstocks. In Bioenergy 2000. ed.^eds. Buffalo, New York, USA.
  • Tolbert, V. R., F. C. Thornton, J. D. Joslin, B. R. Bock, W. Bandaranayake, A. E. Houston, D. D. Tyler, D. A. Mays, T. H. Green, and D. E. Pettry. 2000b. Increasing below-ground carbon sequestration with conversion of agricultural lands to production of bio-energy crops. New Zealand Journal of Forest Science 30:138–49.
  • Tolbert, V. R., D. E. Todd, L. K. Mann, C. M. Jawdy, D. A. Mays, R. Malik, W. Bandaranayake, A. Houston, D. Tyler, and D. E. Pettry. 2002. Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production. Environmental Pollution 116:S97–S106. doi:10.1016/S0269-7491(01)00262-7.
  • Vance, E. D., C. Loehle, T. B. Wigley, and P. Weatherford. 2014. Scientific basis for sustainable management of Eucalyptus and Populus as short-rotation woody crops in the US. Forests 5 (5):901–18. doi:10.3390/f5050901.
  • Woolfolk, W. T. M., and A. L. Friend. 2003. Growth response of cottonwood roots to varied NH4: NO3 ratios in enriched patches. Tree Physiology 23 (6):427–32. doi:10.1093/treephys/23.6.427.
  • Zheng, J. F., J. H. Chen, G. X. Pan, G. M. Wang, X. Y. Liu, X. H. Zhang, L. Q. Li, R. J. Bian, K. Cheng, and J. W. Zheng. 2017. A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology 111:94–104. doi:10.1016/j.apsoil.2016.11.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.