561
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Sugarcane Bagasse Biochar: Preparation, Characterization, and Its Effects on Soil Properties and Zinc Sorption-desorption

&
Pages 1391-1405 | Received 13 Aug 2019, Accepted 09 Apr 2020, Published online: 26 Jun 2020

References

  • Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071.
  • Alinnor, I. J. 2007. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86 (5–6):853–57. doi:10.1016/j.fuel.2006.08.019.
  • Alloway, B. J. 2013. Sources of heavy metals and metalloids in soils. In Heavy metals in soils, ed. B. Alloway, 11–50. Dordrecht: Springer.
  • Al-Wabel, M. I., A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131:374–79. doi:10.1016/j.biortech.2012.12.165.
  • Appel, C., and L. Ma. 2002. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality 31 (2):581–89. doi:10.2134/jeq2002.5810.
  • ASTM. 2000. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. Philadelphia: PA American Society for Testing and Materials.
  • Beesley, L., E. Moreno-Jiménez, J. L. Gomez-Eyles, E. Harris, B. Robinson, and T. Sizmur. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution 159 (12):3269–82. doi:10.1016/j.envpol.2011.07.023.
  • Berihun, T., M. Tadele, and F. Kebede. 2017. The application of biochar on soil acidity and other physico‐chemical properties of soils in southern Ethiopia. Journal of Plant Nutrition and Soil Science 180 (3):381–88. doi:10.1002/jpln.201600343.
  • Blair, G. J., R. D. B. Lefroy, and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46 (7):1459–66. doi:10.1071/AR9951459.
  • Bolan, N., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M. B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials 266:141–66. doi:10.1016/j.jhazmat.2013.12.018.
  • Bolan, N. S., D. C. Adriano, P. A. Mani, and A. Duraisamy. 2003. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil 251 (2):187–98. doi:10.1023/A:1023037706905.
  • Bremner, J. M. 1996. Nitrogen-total. In Methods of soil analysis part 3—chemical methods. In eds. D. L. Sparks, 1085–121. Madison, WI: SSSA and ASA.
  • Brewer, C. E., R. Unger, K. Schmidt-Rohr, and R. C. Brown. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Research 4 (4):312–23. doi:10.1007/s12155-011-9133-7.
  • Broadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. New Phytologist 173 (4):677–702. doi:10.1111/j.1469-8137.2007.01996.x.
  • Butnan, S., J. L. Deenik, B. Toomsan, M. J. Antal, and P. Vityakon. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105–16. doi:10.1016/j.geoderma.2014.08.010.
  • Cetin, S., and E. Pehlivan. 2007. The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 298 (1–2):83–87. doi:10.1016/j.colsurfa.2006.12.017.
  • Chan, K. Y., and Z. Xu. 2012. Biochar: Nutrient properties and their enhancement. In Biochar for environmental management, ed. J. Lehman and S. Joseph, 99–116. London: Routledge.
  • Chan, K. Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Research 45 (8):629–34. doi:10.1071/SR07109.
  • Chaney, R. L. 1993. Zinc phytotoxicity. In Zinc in soils and plants, eds. A. D. Robson, 135–50. Dordrecht, the Netherlands: Springer.
  • Chen, B., D. Zhou, and L. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology 42 (14):5137–43. doi:10.1021/es8002684.
  • Chen, B., and Z. Chen. 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76 (1):127–33. doi:10.1016/j.chemosphere.2009.02.004.
  • Chintala, R., J. Mollinedo, T. E. Schumacher, D. D. Malo, and J. L. Julson. 2014. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science 60 (3):393–404. doi:10.1080/03650340.2013.789870.
  • Chun, Y., G. Sheng, C. T. Chiou, and B. Xing. 2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology 38 (17):4649–55. doi:10.1021/es035034w.
  • Clough, T., L. Condron, C. Kammann, and C. Müller. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3 (2):275–93. doi:10.3390/agronomy3020275.
  • Domingues, R. R., P. F. Trugilho, C. A. Silva, I. C. de Melo, L. C. A. Melo, Z. M. Magriotis, and M. A. Sanchez-Monedero. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One 12 (5):e0176884. doi:10.1371/journal.pone.0176884.
  • EPA. 2009. Drinking Water Treatability Database, GAC Isotherm, eds. Cincinnati, OH: US Environmental Protection Agency Cincinnati, OH.
  • Farrell, M., and D. L. Jones. 2010. Use of composts in the remediation of heavy metal contaminated soil. Journal of Hazardous Materials 175 (1–3):575–82. doi:10.1016/j.jhazmat.2009.10.044.
  • Fontes, M. P. F., and L. R. F. Alleoni. 2006. Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils. Scientia Agricola 63 (6):589–608. doi:10.1590/S0103-90162006000600014.
  • Gee, G. W., and D. Or. 2002. Particle-size analysis. In Methods of soil analysis. Part 4, ed. J. H. Dane and G. C. Topp, 255–93. Madison, WI: SSSA.
  • Gray, C. W., S. J. Dunham, P. G. Dennis, F. J. Zhao, and S. P. McGrath. 2006. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution 142 (3):530–39. doi:10.1016/j.envpol.2005.10.017.
  • Gupta, R. K., S. Van den Elshout, and I. P. Abrol. 1987. Effect of pH on zinc adsorption-precipitation reactions in an alkali soil. Soil Science 143 (3):198–204. doi:10.1097/00010694-198703000-00006.
  • Han, Y., A. A. Boateng, P. X. Qi, I. M. Lima, and J. Chang. 2013. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. Journal of Environmental Management 118:196–204. doi:10.1016/j.jenvman.2013.01.001.
  • Houben, D., L. Evrard, and P. Sonnet. 2013. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92 (11):1450–57. doi:10.1016/j.chemosphere.2013.03.055.
  • Jassal, R. S., M. S. Johnson, M. Molodovskaya, T. A. Black, A. Jollymore, and K. Sveinson. 2015. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Journal of Environmental Management 152:140–44. doi:10.1016/j.jenvman.2015.01.021.
  • Jiang, T.-Y., J. Jiang, X. Ren-Kou, and L. Zhuo. 2012. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89 (3):249–56. doi:10.1016/j.chemosphere.2012.04.028.
  • Jones, D. L., G. Edwards-Jones, and D. V. Murphy. 2011. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology and Biochemistry 43 (4):804–13. doi:10.1016/j.soilbio.2010.12.015.
  • Kamaraj, R., A. Pandiarajan, S. Vasudevan, and S. Vasudevan. 2018. Facile one-pot electrosynthesis of zinc hydroxide for the adsorption of hazardous 2-(2-methyl-4-chlorophenoxy) propionic acid (MCPP) from water and its modelling studies. Journal of Environmental Chemical Engineering 6 (2):2017–26. doi:10.1016/j.jece.2018.03.011.
  • Karami, N., R. Clemente, E. Moreno-Jiménez, N. W. Lepp, and L. Beesley. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials 191 (1–3):41–48. doi:10.1016/j.jhazmat.2011.04.025.
  • Kloss, S., F. Zehetner, A. Dellantonio, R. Hamid, Ottner, V. Liedtke, M. Schwanninger, M. H. Gerzabek, and G. Soja. 2012. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41 (4):990–1000. doi:10.2134/jeq2011.0070.
  • Kumpiene, J., A. Lagerkvist, and C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Management 28 (1):215–25. doi:10.1016/j.wasman.2006.12.012.
  • Lehmann, J., J. P. da Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil 249 (2):343–57. doi:10.1023/A:1022833116184.
  • Lehmann, J., and S. Joseph. 2015. Biochar for environmental management: An introduction. In Biochar for environmental management, ed.. 33–46. London, UK: Routledge.
  • Li, F., K. Shen, X. Long, J. Wen, X. Xie, X. Zeng, Y. Liang, Y. Wei, Z. Lin, and W. Huang. 2016. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PloS One 11 (2):e0148132. doi:10.1371/journal.pone.0148132.
  • Lowell, S., J. E. Shields, M. A. Thomas, and M. Thommes. 2012. Characterization of porous solids and powders: Surface area, pore size and density. Dorddrecht, Netherlands: Springer Science & Business Media.
  • Mayakaduwa, S. S., P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y. S. Ok, A. Usman, A. Abduljabbar, and M. Vithanage. 2016. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere 144:2516–21. doi:10.1016/j.chemosphere.2015.07.080.
  • Melo, L. C. A., L. R. F. Alleoni, G. Carvalho, and R. A. Azevedo. 2011. Cadmium‐and barium‐toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. Journal of Plant Nutrition and Soil Science 174 (5):847–59. doi:10.1002/jpln.201000250.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of soil analysis part 3—chemical methods, ed. D. L. Sparks, 961–1010. Madison, WI: Soil Sci. Soc. Am. and Am. Soc. Agr.
  • Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, M. Ahmedna, D. Rehrah, D. W. Watts, W. J. Busscher, and Schomberg. H. 2009b. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3:195– 206.
  • Novak, J. M., W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, and M. A. S. Niandou. 2009a. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science 174 (2):105–12. doi:10.1097/SS.0b013e3181981d9a.
  • Park, J. H., G. Choppala, N. S. Bolan, J. W. Chung, and T. Chuasavathi. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348 (1–2):439. doi:10.1007/s11104-011-0948-y.
  • Pereira, R.C., J. Kaal, M.C. Arbestain, R.P. Lorenzo, W. Aitkenhead, M. Hedley, F. Macías, J. Hindmarsh, and J.A. Maciá-Agulló. 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry42 (11):1331–1342.
  • Puga, A. P., C. A. Abreu, L. C. A. Melo, and L. Beesley. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management 159:86–93. doi:10.1016/j.jenvman.2015.05.036.
  • Querol, X., A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. Garcı́a-Sánchez, J. Cama, C. Ayora, and M. Simón. 2006. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere 62 (2):171–80. doi:10.1016/j.chemosphere.2005.05.029.
  • Rondon, M. A., J. Lehmann, J. Ramírez, and M. Hurtado. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils 43 (6):699–708. doi:10.1007/s00374-006-0152-z.
  • Schimmelpfennig, S., and B. Glaser. 2012. One step forward toward characterization: Some important material properties to distinguish biochars. Journal of Environmental Quality 41 (4):1001–13. doi:10.2134/jeq2011.0146.
  • Shi, W.-Y., H.-B. Shao, L. Hua, M.-A. Shao, and D. Sheng. 2009. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials 170 (1):1–6. doi:10.1016/j.jhazmat.2009.04.097.
  • Shuman, L. M. 1999. Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality 28 (5):1442–47. doi:10.2134/jeq1999.00472425002800050008x.
  • Siegel, F. R. 2002. Environmental geochemistry of potentially toxic metals. Berlin-Heidelberg: Springer.
  • Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48 (7):516–25. doi:10.1071/SR10058.
  • Song, W., and M. Guo. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94:138–45. doi:10.1016/j.jaap.2011.11.018.
  • Suarez, D. L. 1996. Beryllium, magnesium, calcium, strontium and barium. In Methods of soil analysis, Part 3, ed. S. DL, 575–602. Madison, WI: SSSA and ASA.
  • Sumner, M. E., and W. P. Miller. 1996. Cation exchange capacity and exchange coefficients. In Methods of soil analysis. Part 3, ed. D. L. Sparks, 1201–29. Madison, WI: SSSA and ASA.
  • Uchimiya, M., I. M. Lima, K. Thomas Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers. 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58 (9):5538–44. doi:10.1021/jf9044217.
  • Uchimiya, M., S. Chang, and K. T. Klasson. 2011. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials 190 (1–3):432–41. doi:10.1016/j.jhazmat.2011.03.063.
  • Van Zwieten, L., S. Kimber, S. Morris, K. Y. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327 (1–2):235–46. doi:10.1007/s11104-009-0050-x.
  • Wang, B., C. Wang, L. Jing, H. Sun, and X. Zhen. 2014. Remediation of alkaline soil with heavy metal contamination using tourmaline as a novel amendment. Journal of Environmental Chemical Engineering 2 (3):1281–86. doi:10.1016/j.jece.2014.05.017.
  • Wang, X.S., H.H. Miao, W. He, and H.L. Shen. 2011. Competitive adsorption of pb (ii), Cu (Ii), and Cd (Ii) Ions on Wheat-residue Derived Black Carbon. Journal of Chemical & Engineering data 56 (3):444–449.
  • Wu, W., M. Yang, Q. Feng, K. McGrouther, H. Wang, H. Lu, and Y. Chen. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy 47:268–76. doi:10.1016/j.biombioe.2012.09.034.
  • Xu, R.-K., A. Zhao, J.-H. Yuan, and J. Jiang. 2012. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. Journal of Soils and Sediments 12 (4):494–502. doi:10.1007/s11368-012-0483-3.
  • Yao, F. X., M. C. Arbestain, S. Virgel, F. Blanco, J. Arostegui, J. A. Maciá-Agulló, and F. Macìas. 2010. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 80 (7):724–32. doi:10.1016/j.chemosphere.2010.05.026.
  • Yi, Y., S. T. Liao, M. W. Zhang, J. Shi, R. F. Zhang, Y. Y. Deng, and Z. C. Wei. 2011. Physicochemical characteristics and immunomodulatory activities of three polysaccharide-protein complexes of longan pulp. Molecules 16 (7):6148–64. doi:10.3390/molecules16076148.
  • Yuan, J. ‐. H., and R. ‐. K. Xu. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management 27 (1):110–15. doi:10.1111/j.1475-2743.2010.00317.x.
  • Yuan, J.-H., R.-K. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102 (3):3488–97. doi:10.1016/j.biortech.2010.11.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.