1,128
Views
3
CrossRef citations to date
0
Altmetric
Articles

Investigating the influence of instrumental parameters and chemical composition on pyrolysis efficiency of peat

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1572-1581 | Received 05 Dec 2019, Accepted 20 May 2020, Published online: 05 Aug 2020

References

  • Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8 (7):1769–78. doi:10.5194/bg-8-1769-2011.
  • Artz, R. R. E., S. J. Chapman, A. H. J. Robertson, J. M. Potts, F. Laggoun-Défarge, S. Gogo, L. Comont, J.-R. Disnar, and A.-J. Francez. 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry 40 (2):515–27. doi:10.1016/j.soilbio.2007.09.019.
  • Baldock, J. A., J. M. Oades, P. N. Nelson, T. M. Skene, A. Golchin, and P. Clarke. 1997. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Soil Research 35 (5):1061–84. doi:10.1071/S97004.
  • Biller, P., and A. B. Ross. 2014. Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Research 6:91–97. doi:10.1016/j.algal.2014.09.009.
  • Boon, J. J., L. Dupont, and J. W. De Leeuw. 1986. Characterization of a peat bog profile by Curie point pyrolysis-mass spectrometry combined with multivariant analysis and by pyrolysis gas chromatography-mass spectrometry. In Fuchsman, C.H., editor, Peat and Water, New York: Elsevier, 215–39.
  • Chapman, S. J., C. D. Campbell, A. R. Fraser, and G. Puri. 2001. FTIR spectroscopy of peat in and bordering Scots pine woodland: Relationship with chemical and biological properties. Soil Biology and Biochemistry 33 (9):1193–200. doi:10.1016/S0038-0717(01)00023-2.
  • De la Rosa, J. M., J. A. González-Pérez, R. González-Vázquez, H. Knicker, E. López-Capel, D. A. C. Manning, and F. J. González-Vila. 2008. Use of pyrolysis/GC–MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. Catena 74 (3):296–303. doi:10.1016/j.catena.2008.03.004.
  • De la Rosa, J. M., J. A. González-Pérez, F. J. González-Vila, H. Knicker, and M. F. Araújo. 2011. Molecular composition of sedimentary humic acids from South West Iberian Peninsula: A multi-proxy approach. Organic Geochemistry 42 (7):791–802. doi:10.1016/j.orggeochem.2011.05.004.
  • De la Rosa, J. M., S. R. Faria, M. E. Varela, H. Knicker, F. J. González-Vila, J. A. González-Pérez, and J. Keizer. 2012. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191:24–30. doi:10.1016/j.geoderma.2012.01.032.
  • Derenne, S., and Q. Katell. 2015. Analytical pyrolysis as a tool to probe soil organic matter. Journal of Analytical and Applied Pyrolysis 111:108–20. doi:10.1016/j.jaap.2014.12.001.
  • Górecki, T., and J. Poerschmann. 2001. In-column pyrolysis: A new approach to an old problem. Analytical Chemistry 73 (9):2012–17. doi:10.1021/ac000913b.
  • Grandy, A. S., M. S. Strickland, C. L. Lauber, M. A. Bradford, and N. Fierer. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150 (3–4):278–86. doi:10.1016/j.geoderma.2009.02.007.
  • Huang, Y., G. Eglinton, E. R. E. Van der Hage, J. J. Boon, R. Bol, and P. Ineson. 1998. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques. European Journal of Soil Science 49 (1):1–15. doi:10.1046/j.1365-2389.1998.00141.x.
  • Krüger, J. P., C. Alewell, K. Minkkinen, S. Szidat, and J. Leifeld. 2016. Calculating carbon changes in peat soils drained for forestry with four different profile-based methods. Forest Ecology and Management 381:29–36. doi:10.1016/j.foreco.2016.09.006.
  • Krull, E. S., and G. J. Retallack. 2000. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release. Geological Society of America Bulletin 112 (9):1459–72. doi:10.1130/0016-7606(2000)112<1459:CDPFPA>2.0.CO;2.
  • Larmola, T., J. L. Bubier, C. Kobyljanec, N. Basiliko, S. Juutinen, E. Humphreys, M. Preston, and T. R. Moore. 2013. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Global Change Biology 19 (12):3729–39. doi:10.1111/gcb.12328.
  • Leifeld, J., C. Alewell, C. Bader, J. P. Krüger, C. W. Mueller, M. Sommer, M. Steffens, and S. Szidat. 2018. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded northern peatlands. Land Degradation & Development 29 (7):2082–91. doi:10.1002/ldr.2812.
  • Leifeld, J., C. Wüst-Galley, and S. Page. 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9 (12):945-47.
  • Leinweber, P., and H.-R. Schulten. 1995. Composition, stability and turnover of soil organic matter: Investigations by off-line pyrolysis and direct pyrolysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis 32:91–110. doi:10.1016/0165-2370(94)00832-L.
  • Lu, Q., X.-C. Yang, C.-Q. Dong, Z.-F. Zhang, X.-M. Zhang, and X.-F. Zhu. 2011. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis 92 (2):430–38. doi:10.1016/j.jaap.2011.08.006.
  • Lu, X. Q., J. V. Hanna, and W. D. Johnson. 2000. Source indicators of humic substances: An elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry 15 (7):1019–33. doi:10.1016/S0883-2927(99)00103-1.
  • Martin, F., C. Saiz-Jimenez, and F. J. Gonzalez-Vila. 1979. Pyrolysis-gas chromatography-mass spectrometry of lignins. Holzforschung 33 (6):210–12.
  • Parsi, Z., N. Hartog, T. Górecki, and J. Poerschmann. 2007. Analytical pyrolysis as a tool for the characterization of natural organic matter—A comparison of different approaches. Journal of Analytical and Applied Pyrolysis 79 (1):9–15. doi:10.1016/j.jaap.2006.10.013.
  • Paustian, K., J. Lehmann, S. Ogle, D. Reay, G. Philip Robertson, and P. Smith. 2016. Climate-smart soils. Nature 532 (7597):49. doi:10.1038/nature17174.
  • Preston, C. M., R. Hempfling, H.-R. Schulten, M. Schnitzer, J. A. Trofymow, and D. E. Axelson. 1994. Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionization mass spectrometry. Plant and Soil 158 (1):69–82. doi:10.1007/BF00007919.
  • Saiz-Jimenez, C. 1994. Analytical pyrolysis of humic substances: Pitfalls, limitations, and possible solutions. Environmental Science & Technology 28 (11):1773–80. doi:10.1021/es00060a005.
  • Schellekens, J., P. Buurman, and X. Pontevedra-Pombal. 2009. Selecting parameters for the environmental interpretation of peat molecular chemistry–a pyrolysis-GC/MS study. Organic Geochemistry 40 (6):678–91. doi:10.1016/j.orggeochem.2009.03.006.
  • Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, and D. A. C. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478 (7367):49. doi:10.1038/nature10386.
  • Schulten, H.-R., and P. Leinweber. 1996. Characterization of humic and soil particles by analytical pyrolysis and computer modeling. Journal of Analytical and Applied Pyrolysis 38 (1–2):1–53. doi:10.1016/S0165-2370(96)00954-0.
  • Schulten, H.-R., P. Leinweber, and B. K. G. Theng. 1996. Characterization of organic matter in an interlayer clay-organic complex from soil by pyrolysis methylation-mass spectrometry. Geoderma 69 (1–2):105–18. doi:10.1016/0016-7061(95)00054-2.
  • Sorge, C., R. Müller, P. Leinweber, and H.-R. Schulten. 1993. Pyrolysis-mass spectrometry of whole soils, soil particle-size fractions, litter materials and humic substances: Statistical evaluation of sample weight, residue, volatilized matter and total ion intensity. Fresenius’ Journal of Analytical Chemistry 346 (6):697–703. doi:10.1007/BF00321275.
  • Uden, P. C. 1993. Nomenclature and terminology for analytical pyrolysis (IUPAC Recommendations 1993). Pure and Applied Chemistry 65 (11):2405–09. doi:10.1351/pac199365112405.
  • White, D. M., D. Sarah Garland, L. Beyer, and K. Yoshikawa. 2004. Pyrolysis-GC/MS fingerprinting of environmental samples. Journal of Analytical and Applied Pyrolysis 71 (1):107–18. doi:10.1016/S0165-2370(03)00101-3.