241
Views
12
CrossRef citations to date
0
Altmetric
Articles

Developing a nano-Fe Complex to Supply Iron and Improve Salinity Tolerance of Pistachio under Calcium Bicarbonate Stress

ORCID Icon, ORCID Icon, &
Pages 1835-1851 | Received 14 Feb 2020, Accepted 09 Apr 2020, Published online: 17 Aug 2020

References

  • Albano, J. P., and D. J. Merhaut. 2012. Influence of FeEDDS, FeEDTA, FeDTPA, Fe–EDDHA, and FeSO4 on marigold growth and nutrition, and substrate and runoff chemistry. HortScience 47 (1):93–97. doi:10.21273/HORTSCI.47.1.93.
  • Albano, J. P., W. B. Miller, and M. C. Halbrooks. 1996. Iron toxicity stress causes bronze speckle, a specific physiological disorder of marigold (Tagetes erecta L.). Journal of the American Society for Horticultural Science 121 (3):430–37. doi:10.21273/JASHS.121.3.430.
  • Amirnia, R., M. Bayat, and M. Tajbakhsh. 2014. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish Journal of Field Crops 19 (2):158–68. doi:10.17557/tjfc.46269.
  • Arora, R., D. S. Pitchay, and B. C. Bearce. 1998. Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiologia Plantarum 103 (1):24–34. doi:10.1034/j.1399–3054.1998.1030104.x.
  • Askary, M., S. M. Talebi, F. Amini, and A. D. B. Bangan. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija 63 (1):65–75. doi:10.6001/biologija.v63i1.3476.
  • Babaei, K., R. Seyed Sharifi, A. Pirzad, and R. Khalilzadeh. 2017. Effects of bio fertilizer and nano Zn–Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interaction 12 (1):381–89. doi:10.1080/17429145.2017.1371798.
  • Bachman, G. R., and W. B. Miller. 1995. Iron chelate inducible iron/manganese toxicity in zonal gera–nium. Journal of Plant Nutrition 18:1917–29. doi:10.1080/01904169509365033.
  • Barker, A. V., and D. J. Pilbeam. 2015. Handbook of plant nutrition. London, UK: CRC press.
  • Bastani, S., R. Hajiboland, M. Khatamian, and M. Saket–Oskoui. 2018. Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. Journal of Soil Science and Plant Nutrition 18 (2):524–41. doi:10.4067/S0718–95162018005001602.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water–stress studies. Plant and Soil 39 (1):205–07. doi:10.1007/BF00018060.
  • Bezrukova, M. V. 2001. The role of hormonal changes in protective action of salicylic acid on growth of wheat seedlings under water deficit. Agrochemya (Russ.) 2:51–54.
  • Blakrishman, K. 2000. Peroxidase activity as an indicator of the iron deficiency banana. Indian Journal of Plant Physiology 2:333–331.
  • Broschat, T. K., and K. K. Moore. 2004. Phytotoxicity of several iron fertilizers and their effects on Fe, Mn, Zn, Cu, and P content of African marigolds and zonal geraniums. HortScience 39 (3):595–98. doi:10.21273/HORTSCI.39.3.595.
  • Chaney, R. L. 1988. Plants can utilize iron form Fe‐N, N’‐di‐(2‐hydroxybenzoyl)‐ethylenediamine‐N, N’‐diacetic acid, a ferric chelate with 106 greater formation constant than Fe‐EDDHA. Journal of Plant Nutrition 11 (6–11):1033–50. doi:10.1080/01904168809363867.
  • Chartzoulakis, K. S. 2005. Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agricultural Water Management 78 (1–2):108–21. doi:10.1016/j.agwat.2005.04.025.
  • de Lacerda, C. F., J. Cambraia, M. A. Oliva, and H. A. Ruiz. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany 54 (1):69–76. doi:10.1016/j.envexpbot.2004.06.004.
  • Demiral, T., and I. Türkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53 (3):247–57. doi:10.1016/j.envexpbot.2004.03.017.
  • El–Tayeb, M. A. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation 45 (3):215–24. doi:10.1007/s10725–005–4928–1.
  • Evelin, H., B. Giri, and R. Kapoor. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl–stressed Trigonella foenum–graecum. Mycorrhiza 22 (3):203–17. doi:10.1080/01904160801895027.
  • Fageria, N. K., H. R. Gheyi, and A. Moreira. 2011. Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition 34 (7):945–62. doi:10.1080/01904167.2011.555578.
  • Fathi, A., M. Zahedi, and S. Torabian. 2017. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. Journal of Plant Nutrition 40 (19):2745–55. doi:10.1080/01904167.2017.1381731.
  • Fayez, K. A., and S. A. Bazaid. 2014. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of Saudi Society of Agricultural Science 13:45–55. doi:10.1016/j.jssas.2013.01.001.
  • Ferguson, L., V. Polito, and C. Kallsen. 2005. The pistachio tree; botany and physiology and factors that affect yield. In Pistachio production manual, 4th ed., 31–39. Davis, United States: University of California Fruit & Nut Research Information Center.
  • Ferguson, L., J. A. Poss, S. R. Grattan, C. M. Grieve, D. Wang, C. Wilson, T. J. Donovan, and C. T. Chao. 2002. Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. Journal of the American Society for Horticultural Science 127 (2):194–99. doi:10.21273/JASHS.127.2.194.
  • Flowers, T. J., and S. A. Flowers. 2005. Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management 78:15–24. doi:10.1016/j.agwat.2005.04.015.
  • Fourcroy, P., N. Tissot, F. Gaymard, J. F. Briat, and C. Dubos. 2016. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high–affinity root Fe2+ transport system. Molecular Plant 9 (3):485–88. doi:10.1016/j.molp.2015.09.010.
  • Frost, A. E., H. H. Freedman, S. J. Westerback, and A. E. Martell. 1958. Chelating tendencies of N,N’–ethylenebis–[2–(o–hydroxyphenyl)]–glycine. Journal of the American Chemical Society 80:530–36. doi:10.1021/ja01536a006.
  • Grattan, S. R., and C. M. Grieve. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78 (1–4):127–57. doi:10.1016/S0304–4238(98)00192–7.
  • Gunes, A., A. Inal, M. Alpaslan, F. Eraslan, E. G. Bagci, and N. Cicek. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164 (6):728–36. doi:10.1016/j.jplph.2005.12.009.
  • Gupta, R. K., R. R. Singh, and I. P. Abrol. 1989. Influence of simultaneous changes in sodicity and pH on the hydraulic conductivity of an alkali soil under rice culture. Soil Science 147:28–33. doi:10.1097/00010694-198901000-00005.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics - Journal 125:189–98. doi:10.1016/0003-9861(68)90654-1.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water–culture method for growing plants without soil. In Circular. California agricultural experiment station, 2nd ed., 347. California, United States: University of California.
  • Hokmabadi, H., K. Arzani, and P. F. Grierson. 2005. Growth, chemical composition, and carbon isotope discrimination of pistachio (Pistacia vera L.) rootstock seedlings in response to salinity. Australian Journal of Agricultural Research 56 (2):135–44. doi:10.1071/AR04088.
  • Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168 (4):541–49. doi:10.1002/jpln.200420516.
  • Jayakannan, M., J. Bose, O. Babourina, Z. Rengel, and S. Shabala. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation 76 (1):25–40. doi:10.3389/fpls.2015.00462.
  • Karimi, S., Z. Mirfattahi, L. Ferguson, and V. Tavallali. 2017. Using controlled salt stress and β–aminobutyric acid signaling to decrease transplant failure. Scientia Horticulturae 225:156–62. doi:10.1016/j.scienta.2017.06.070.
  • Karimi, S., and M. Rahemi. 2012. Growth and chemical composition of pistachio seedling rootstock in response to exogenous polyamines under salinity stress. Journal of Nuts 3 (2):21–30.
  • Karimi, S., M. Rahemi, M. Maftoun, S. Eshghi, and V. Tavallali. 2009a. Effects of long–term salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks. Australian. Journal of Basic and Applied Sciences 3 (3):1630–39.
  • Karimi, S., V. Tavallali, M. Rahemi, A. A. Rostami, and M. Vaezpour. 2009b. Estimation of leaf growth on the basis of measurements of leaf lengths and widths, choosing pistachio seedlings as model. Australian Journal of Basic and Applied Sciences 3 (2):1070–75.
  • Karimi, S., V. Tavallali, and M. Wirthensohn. 2018. Boron amendment improves water relations and performance of Pistacia vera under salt stress. Scientia Horticulturae 241:252–59. doi:10.1016/j.scienta.2018.06.064.
  • Khan, M. I. R., M. Asgher, and N. A. Khan. 2014. Alleviation of salt–induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry 80:67–74. doi:10.1016/j.plaphy.2014.03.026.
  • Khoyerdi, F. F., M. H. Shamshiri, and A. Estaji. 2016. Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Scientia Horticulturae 198:44–51. doi:10.1016/j.scienta.2015.11.028.
  • Konings, H. 1989. Physiological and morphological differences between plants with a high NAR or a high LAR as related to environmental conditions. In Causes and consequences of variation in growth rate and productivity of higher plants, ed. H. Lambers, M. L. Cambridge, H. Konings, and T. L. Pons, 101–23. Amsterdam, The Netherlands: SPB Academic Publishing.
  • Kroll, H. 1957. The ferric chelate of ethylene–diamine di(O–hydroxyphenylacetic acid) for treatment of lime–induced chlorosis. Soil Science 84:51–53. doi:10.1097/00010694-195707000-00006.
  • Li, G., X. Peng, L. Wei, and G. Kang. 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt–stressed wheat seedlings. Gene 529:321–25. doi:10.1016/j.gene.2013.07.093.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148:350–82.
  • Liu, F., and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae 102 (1):15–27. doi:10.1016/j.scienta.2003.11.014.
  • Loeppert, R. H. 1986. Reactions of iron and carbonates in calcareous soils. Journal of Plant Nutrition 9 (3–7):195–214. doi:10.1080/01904168609363437.
  • Marron, N., E. Dreyer, E. Boudouresque, D. Delay, J. M. Petit, F. M. Delmotte, and F. Brignolas. 2003. Impact of successive drought and re–watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones,‘Dorskamp’ and ‘Luisa_Avanzo’. Tree Physiology 23 (18):1225–35. doi:10.1093/treephys/23.18.1225.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Cambridge, United States: Academic Press.
  • Marschner, H., and V. Romheld. 1994. Strategies of plants for acquisition of iron. Plant and Soil 165:275–83. doi:10.1007/BF00008069.
  • Martínez–Cuenca, M. R., F. Legaz, M. Á. Forner–Giner, E. Primo–Millo, and D. J. Iglesias. 2013. Bicarbonate blocks iron translocation from cotyledons inducing iron stress responses in Citrus roots. Journal of Plant Physiology 170 (10):899–905. doi:10.1016/j.jplph.2013.01.012.
  • Mehdi–Tounsi, H., A. Chelli–Chaabouni, D. Mahjoub–Boujnah, and M. Boukhris. 2017. Long–term field response of pistachio to irrigation water salinity. Agricultural Water Management 185:1–12. doi:10.1016/j.agwat.2017.02.003.
  • Mengel, K. 1994. Iron availability in plant tissues–iron chlorosis on calcareous soils. Plant and Soil 165 (2):275–83. doi:10.1016/j.agwat.2017.02.003.
  • Miller, G. W., I. J. Huang, G. W. Welkie, and J. C. Pushmik. 1995. Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In Iron nutrition in soils and plants, ed. J. Abadia, 19–28. Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Mirfattahi, Z., S. Karimi, and M. R. Roozban. 2017. Salinity induced changes in water relations, oxidative damage and morpho–physiological adaptations of pistachio genotypes in soilless culture. Acta Agriculturae Slovenica 109 (2):291–302. doi:10.14720/aas.2017.109.2.12.
  • Mishra, A., and M. A. Choudhuri. 1999. Effects of salicylic acid on heavy metal–induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum 42 (3):409–15. doi:10.1023/A:1002469303670.
  • Munns, R., P. A. Wallace, N. L. Teakle, and T. D. Colmer. 2010. Measuring soluble ion concentrations (Na+, K+, Cl−) in salt–treated plants. In Plant stress tolerance: Methods and protocols, ed. R. Sunkar, 371–82. Berlin, Germany: Springer. doi: 10.1007/978–1–60761–702–0_23.
  • Nadal, P., C. García–Delgado, D. Hernández, S. López–Rayo, and J. J. Lucena. 2012. Evaluation of Fe–N, N′–Bis (2–hydroxybenzyl) ethylenediamine–N, N′–diacetate (HBED/Fe3+) as Fe carrier for soybean (Glycine max) plants grown in calcareous soil. Plant and Soil 360 (1–2):349–62. doi:10.1007/s11104–012–1246–z.
  • Nazar, R., N. Iqbal, S. Syeed, and N. A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168 (8):807–15. doi:10.1016/j.jplph.2010.11.001.
  • Negrão, S., S. M. Schmöckel, and M. Tester. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany 119 (1):1–11. doi:10.1093/aob/mcw191.
  • Nikolic, M., and R. Kastori. 2000. Effect of bicarbonate and Fe supply on Fe nutrition of grapevine. Journal of Plant Nutrition 23:1619–27. doi:10.1080/01904160009382128.
  • Nikolic, M., and V. Romheld. 2002. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant and Soil 241:67–74. doi:10.1023/A:1016029024374.
  • Page, A. L., A. C. Chang, and D. C. Adriano. 1990. Deficiencies and toxicities of trace elements. In Agricultural salinity assessment and management, ed. W. W. Wallender and K. K. Tanji, New York: United States: ASCE. doi: 10.1061/9780784411698.
  • Rahemi, M., S. Karimi, S. Sedaghat, and A. A. Rostami. 2017. Physiological responses of olive cultivars to salinity stress. Advances in Horticultural Science 31 (1):53–59. doi:10.13128/ahs–20726.
  • Ruiz, J. M., M. Baghour, and L. Romers. 2000. Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition 23:1555–1532. doi:10.1080/01904160009382141.
  • Schenkeveld, W. D. C., A. M. Reichwein, E. J. M. Temminghoff, and W. H. Van Riemsdijk. 2007. The behaviour of EDDHA isomers in soils as influenced by soil properties. Plant and Soil 290 (1–2):85–102. doi:10.1007/s11104–006–9135–y.
  • Senaratna, T., D. Touchell, E. Bunn, and K. Dixon. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30 (2):157–61. doi:10.1023/A:1006386800974.
  • Shipley, B. 1995. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology 9 (2):312–19. doi:10.2307/2390579.
  • Szepesi, Á., J. Csiszár, K. Gémes, E. Horváth, F. Horváth, M. L. Simon, and I. Tari. 2009. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology 166 (9):914–25. doi:10.1016/j.jplph.2008.11.012.
  • Tajabadi Pour, A., A. R. Sepaskhah, and M. Maftoun. 2005. Plant water relations and seedling growth of three pistachio cultivars as influenced by irrigation frequency and applied potassium. Journal of Plant Nutrition 28 (8):1413–25. doi:10.1081/PLN–200067497.
  • Tavallali, V., S. Karimi, and O. Espargham. 2018. Boron enhances antioxidative defense in the leaves of salt–affected Pistacia vera seedlings. The Horticulture Journal 87 (1):55–62. doi:10.2503/hortj.OKD–062.
  • Tavallali, V., M. Rahemi, M. Maftoun, B. Panahi, S. Karimi, A. Ramezanian, and M. Vaezpour. 2009. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae 123 (2):272–79. doi:10.1016/j.scienta.2009.09.006.
  • Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant system in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Science 151:59–66. doi:10.1016/S0168–9452(99)00197–1.
  • Wallace, A., and G. V. Alexander. 1973. Manganese in plants as influenced by manganese and iron chelates. Communications in Soil Science and Plant Analysis 4 (1):51–56. doi:10.1080/00103627309366417.
  • Yildirim, E., M. Turan, and I. Guvenc. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition 31 (3):593–612. doi:10.1080/01904160801895118.
  • Yousefzadeh, S., and N. Sabaghnia. 2016. Nano–iron fertilizer effects on some plant traits of dragonhead (Dracocephalum moldavica L.) under different sowing densities. Acta Agriculturae Slovenica 107 (2):429–37. doi:10.14720/aas.2016.107.2.15.
  • Yousfi, S., H. Mahmoudi, C. Abdelly, and M. Gharsalli. 2007. Effect of salt on physiological responses of barley to iron deficiency. Plant Physiology and Biochemistry 45 (5):309–14. doi:10.1016/j.plaphy.2007.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.