428
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Effect of Silicon Fertilizer and Straw Return on the Maize Yield and Phosphorus Efficiency in Northeast China

ORCID Icon, , , , &
Pages 116-127 | Received 18 Jun 2020, Accepted 14 Oct 2020, Published online: 06 Dec 2020

References

  • Abro, S. A., R. Qureshi, F. M. Soomro, A. A. Mirbahar, and G. Jakhar. 2009. Effects of silicon levels on growth and yield of wheat in silty loam soil. Pakistan Journal of Botany 41 (3):1385–90. doi:10.1016/j.catena.2017.07.017.
  • Ali, W., M. Nadeem, W. Ashiq, M. Zaeem, S. S. M. Gilani, S. Rajabi Khamseh, T. H. Pham, V. Kavanagh, R. Thomas, and M. Cheema. 2019. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Scientific Reports 9 (1):1–17. doi:10.1038/s41598-019-53906-8.
  • Artyszak, A. 2018. Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants 7 (3):54. doi:10.3390/plants7030054.
  • Ayalew, A., and T. Dejene. 2012. Combined application of organic and inorganic fertilizers to increase the yield of barley and improve soil properties at fereze in southern Ethiopia. Innovative Systems Design and Engineering 3 (1):25–35.
  • Azevedo, R. P., I. H. Salcedo, A. Lima, V. Da Silva Fraga, and R. M. Q. Lana. 2018. Mobility of phosphorus from organic and inorganic source materials in sandy soil. International Journal of Recycling of Organic Waste in Agriculture 7 (2):153–63. doi:10.1007/s40093-018-0201-2.
  • Cuong, T. X., H. Ullah, A. Datta, and T. C. Hanh. 2017. Effects of silicon-based fertilizer on growth, yield, and nutrient uptake of rice in the tropical zone of Vietnam. Rice Science 24 (5):283–90. doi:10.1016/j.rsci.2017.06.002.
  • Group, C. A. S. C. C., S. C. W. Group, S. C. W. Canada, N. R. C. Agriculture, C. Branch, and C. R. A-F. 1998. The Canadian system of soil classification, Vol. 1646. Ottawa: NRC Research Press.
  • Guo, Z., H. Liu, K. Hua, D. Wang, and C. He. 2018. Long-term straw incorporation benefits the elevation of soil phosphorus availability and uses efficiency in the agroecosystem. The Spanish Journal of agricultural research 16 (3):21. doi:10.5424/sjar/2018163-12857.
  • Gupta, R., J. Ladha, J. Singh, G. Singh, and H. Pathak. 2007. Yield and phosphorus transformations in a rice-wheat system with crop residue and phosphorus management. Soil Science Society of America Journal 71 (5):1500–07. doi:10.2136/sssaj2006.0325.
  • Jianfeng, M., and E. Takahashi. 1991. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil 133 (2):151–55. doi:10.1007/bf00009187.
  • Kaewpradit, W., B. Toomsan, G. Cadisch, P. Vityakon, V. Limpinuntana, P. Saenjan, S. Jogloy, and A. Patanothai. 2009. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Research 110 (2):130–38. doi:10.1016/j.fcr.2008.07.011.
  • Korndörfer, G., G. Snyder, M. Ulloa, G. Powell, and L. Datnoff. 2001. Calibration of soil and plant silicon analysis for rice production. Journal of Plant Nutrition 24 (7):1071–84. doi:10.1081/pln-100103804.
  • Koski-vähälä, J., and H. H. Tallberg. 2001. Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration. Journal of Environmental Quality 30 (2):546–52. doi:10.2134/jeq2001.302546x.
  • Kostic, L., N. Nikolic, D. Bosnic, J. Samardzic, and M. Nikolic. 2017. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant and Soil 419 (1–2):447–55. doi:10.1007/s11104-017-3364-0.
  • Lan, Z., X. Lin, F. Wang, H. Zhang, and C. Chen. 2012. Phosphorus availability and rice grain yield in paddy soil in response to long-term fertilization. Biology and Fertility of Soils 48 (5):579–88. doi:10.1007/s00374-011-0650-5.
  • Li, S., Y. Li, X. Li, X. Tian, A. Zhao, S. Wang, S. Wang, and J. Shi. 2016. Effect of straw management on carbon sequestration and grain production in a maize–wheat cropping system in Anthrosol of the Guanzhong Plain. Soil and Tillage Research 157:43–51. doi:10.1016/j.still.2015.11.002.
  • Li, Z., F. Guo, J. T. Cornelis, Z. Song, X. Wang, and B. Delvaux. 2020. Combined silicon-phosphorus fertilization affects the biomass and phytolith stock of rice plants. Frontiers in Plant Science (vol):11. doi:10.3389/fpls.2020.00067.
  • Li, Z., Z. Song, B. P. Singh, and H. Wang. 2019. The impact of crop residue biochars on silicon and nutrient cycles in croplands. Science of the Total Environment 659:673–80. doi:10.1016/j.scitotenv.2018.12.381.
  • Lv, Y., Y. Wang, and W. L. Zhu. 2019. Straw return with reduced nitrogen fertilizer maintained high maize yield in Northeast China. Agronomy 9 (5):229. doi:10.3390/agronomy9050229.
  • Ma, J., and E. Takahashi. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant and soil 126 (1):115–19. doi:10.1007/bf00041376.
  • Ma, J. F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. Studies in plant Science Elsevier 8 (Elsevier):17–39. doi:10.1016/s0928-3420(01)80006-9.
  • Malakouti, M. J. 2008. The effect of micronutrients in ensuring efficient use of macronutrients. Turkish Journal of Agriculture and Forestry 32 (3):215–20. doi:10.3906/tar-1206-56.
  • Mandal, K. G., A. K. Misra, K. M. Hati, K. K. BandyopadhyaY, K. Ghosh, and M. Mohanty. 2004. Rice residue-management options and effects on soil properties and crop productivity. Journal of Food Agriculture and Environment 2:224–31.
  • Neu, S., J. Schaller, and E. G. Dudel. 2017. Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L. Scientific Reports 7 (1):1–8. doi:10.1038/srep40829.
  • Noack, S. R., T. M. Mcbeath, M. J. Mclaughlin, R. J. Smernik, and R. D. Armstrong. 2014. Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labeling experiment. Soil Biology and Biochemistry 71:31–39. doi:10.1016/j.soilbio.2013.12.022.
  • Owino-gerroh, C., and G. Gascho. 2005. Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Communications in Soil Science and Plant Analysis 35 (15–16):2369–78. doi:10.1081/lcss-200030686.
  • Pathak, H., R. Singh, A. Bhatia, and N. Jain. 2006. Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy and Water Environment 4 (2):111. doi:10.1007/s10333-006-0038-6.
  • Pulz, A. L., C. A. Costa Crusciol, L. B. Lemos, and R. P. Soratto. 2008. Silicate and limestone effects on potato nutrition, yield, and quality under drought stress. Revista Brasileira de Ciência do Solo 32 (4):1651–59. doi:10.1590/s0100-06832008000400030.
  • Ramaekers, L., R. Remans, I. M. Rao, M. W. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117 (2–3):169–76. doi:10.1016/j.fcr.2010.03.001.
  • Rehim, A., M. Hussain, S. Hussain, S. Noreen, H. Doğan, M. ZiauL-Haq, and S. Ahmad. 2016. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turkish Journal of Agriculture and Forestry 40 (3):319–26. doi:10.3906/tar-1505-133.
  • Ren, J., P. Yu, and X. Xu. 2019. Straw Utilization in China—Status and Recommendations. Sustainability 11 (6):1762. doi:10.3390/su11061762.
  • Scanlan, C., R. Brennan, and G. A. Sarre. 2015. Effect of soil pH and crop sequence on the response of wheat (Triticum aestivum) to phosphorus fertilizer. Crop and Pasture Science 66 (1):23–31. doi:10.1071/cp14192.
  • Schaller, J., S. Faucherre, H. Joss, M. Obst, M. Goeckede, B. Planer-Friedrich, S. Peiffer, B. Gilfedder, and B. Elberling. 2019. Silicon increases the phosphorus availability of Arctic soils. Scientific Reports 9 (1):1–11. doi:10.1038/s41598-018-37104-6.
  • Soratto, R. P., A. M. Fernandes, C. Pilon, and M. R. Souza. 2019. Phosphorus and silicon effects on growth, yield, and phosphorus forms in potato plants. Journal of Plant Nutrition 42 (3):218–33. doi:10.1080/01904167.2018.1554072.
  • Veneklaas, E. J., H. Lambers, J. Bragg, M. Finnegan, C. E. Lovelock, W. C. Plaxton, C. A. Price, W. R. Scheible, M. W. Shane, and J. White. 2012. Opportunities for improving phosphorus‐use efficiency in crop plants. New Phytologist 195 (2):306–20. doi:10.1111/j.1469-8137.2012.04190.x.
  • Villegas-pangga, G., G. Blair, and R. Lefroy. 2000. Measurement of decomposition and associated nutrient release from straw (Oryza sativa L.) of different rice varieties using a perfusion system. In-Plant and Soil 223 (1–2):1–11. doi:10.1023/a:1004777911428.
  • Wang, L., U. Ashraf, C. Chang, M. Abrar, and X. Cheng. 2019. Effects of silicon and phosphatic fertilization on rice yield and soil fertility. Journal of Soil Science and Plant Nutrition:1–9. doi:10.1007/s42729-019-00145-5.
  • Wang, Y., and C. X. Shi. 2013. Phosphorus availability in cropland soils of China and related affecting factors. Ying Yong Sheng Tai Xue Bao. The Journal of Applied Ecology 24 (1):260–68. doi:10.3724/sp.j.1258.2012.00539.
  • Wang, Y., Z. Y. Zhang, and S. Wang. 2018. What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production 199:882–90. doi:10.1016/j.jclepro.2018.07.222.
  • Wei, T., P. Zhang, K. Wang, R. Ding, B. Yang, J. Nie, Z. Jia, and Q. Han. 2015. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS One 10 (no):4. doi:10.1371/journal.pone.0120994.
  • White, B., B. S. Tubana, B. T. Mascagni, H. Agostinho, F. Datnoff, and L. E. Harrison. 2017. Effect of silicate slag application on wheat grown under two nitrogen rates. Plants 6 (4):47. doi:10.3390/plants6040047.
  • Xin, X., S. Qin, J. Zhang, A. Zhu, W. Yang, and X. Zhang. 2017. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Research 208:27–33. doi:10.1016/j.fcr.2017.03.011.
  • Xu, J., C. Tang, and Z. L. Chen. 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry 38 (4):709–19. doi:10.1016/j.soilbio.2005.06.022.
  • Yan, C., H. Zhan, S. Yan, S. Dong, C. Ma, Q. Song, Z. Gong, and M. Barbie. 2016. Effects of straw retention and phosphorous fertilizer application on available phosphorus content in the soil solution during rice growth. Springer. doi:10.1007/s10333-015-0478-y.
  • Yang, H., M. Xu, R. T. Koide, Q. Liu, Y. Dai, L. Liu, and X. Bian. 2016. Effects of ditch‐buried straw return on water percolation, nitrogen leaching, and crop yields in a rice-wheat rotation system. Journal of the Science of Food and Agriculture 96 (4):1141–49. doi:10.1002/jsfa.7196.
  • Zhang, P., W. T. Jia, Z. Han, Q. Ren, and X. Li. 2014. Effects of straw incorporation on soil organic matter and soil water-stable aggregates content in semiarid regions of Northwest China. PloS One 9 (3). doi: 10.1371/journal.pone.0092839.
  • Zhao, X., G. Yuan, H. Wang, D. Lu, X. Chen, and J. Zhou. 2019. Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy 9 (3):133. doi:10.3390/agronomy9030133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.