307
Views
12
CrossRef citations to date
0
Altmetric
Review

Effects of Biochar on Replant Disease by Amendment Soil Environment

ORCID Icon, , , , &
Pages 673-685 | Received 26 Oct 2019, Accepted 10 Dec 2020, Published online: 01 Mar 2021

References

  • Abujabhah, I. S., S. A. Bound, R. Doyle, and J. P. Bowman. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology 98:243–53.
  • Adeel, M., X. Song, Y. Wang, D. Francis, and Y. Yang. 2017. Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International 99:107–19.
  • Agegnehu, G., A. Srivastava, and M. I. Bird. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology 119:156–70.
  • Agegnehu, G., P. N. Nelson, and M. I. Bird. 2016. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Science of the Total Environment 569-570:869–79.
  • Ahmad, M., A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok. 2014b. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33.
  • Ahmad, M., A. U. Rajapaksha, J. E. Lim, Z. Ming, N. Bolan, D. Mohan, M. Vithanage, S. L. Sang, and S. O. Yong. 2014a. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33.
  • Ahmad, M., S. S. Lee, X. Dou, D. Mohan, J.-K. Sung, J. E. Yang, and Y. S. Ok. 2012a. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118:536–44.
  • Ahmad, M., S. S. Lee, X. Dou, D. Mohan, J.-K. Sung, J. E. Yang, and Y. S. Ok. 2012b. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118:536–44.
  • Ahmad, Z., B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, and S. Wang. 2018. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production 180:437–49.
  • Aiken, R. M., and A. J. M. Smucker. 1996. Root system regulation of whole plant growth. Annual Review of Phytopathology 34:325–46.
  • Alloway, B. J. 2013. Heavy metals and metalloids as micronutrients for plants and animals. Heavy Metals in Soil 72:195–209.
  • Ameloot, N., S. De Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y. N. Funkuin, W. Prins, L. Bouckaert, and S. Sleutel. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology & Biochemistry 57:401–10.
  • Andrenelli, M., A. Maienza, L. Genesio, F. Miglietta, S. Pellegrini, F. Vaccari, and N. Vignozzi. 2016. Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management 163:190–96.
  • Arshad, M., A. H. A. Khan, I. Hussain, M. Anees, M. Iqbal, G. Soja, C. Linde, and S. Yousaf. 2017. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.). Using Biochar and Bacteria. Applied Soil Ecology 114:90–98.
  • Atucha, A., and G. Litus. 2015. Effect of biochar amendments on peach replant disease. HortScience 50:863–68.
  • Bailey, V. L., S. J. Fansler, and J. L. Smith Jr. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology & Biochemistry 43:296–301.
  • Bao, Z., X. Li, F. Wang, M. Li, J. Zhang, G. Li, L. Zhang, W. Tu, and Z. Zhang. 2016. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’. Plant and Soil 407:307–22.
  • Barrow, C. 2012. Biochar: Potential for countering land degradation and for improving agriculture. Applied Geography 34:21–28.
  • Bezemer, T. M., C. S. Lawson, K. Hedlund, A. R. Edwards, A. J. Brook, J. M. Igual, S. R. Mortimer, and W. H. V. D. Putten. 2010. Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. Journal of Ecology 94:893–904.
  • Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal 81:687–711.
  • Brewer, C. E., and R. C. Brown. 2012. 5.18 - Biochar. In Comprehensive renewable energy, ed. A. Sayigh, 357–84. Oxford: Elsevier.
  • Cao, H., L. Ning, M. Xun, F. Feng, P. Li, S. Yue, J. Song, W. Zhang, and H. Yang. 2019. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Applied Soil Ecology 135:25–32.
  • Cao, X., L. Ma, B. Gao, and W. Harris. 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology 43:3285–91.
  • Chen, G., and R. R. Weil. 2011. Root growth and yield of maize as affected by soil compaction and cover crops. Soil and Tillage Research 117:17–27.
  • Chen, T., R. Liu, and N. R. Scott. 2016. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—Biochar, syngas and bio-oil. Fuel Processing Technology 142:124–34.
  • Chintala, R., T. E. Schumacher, S. Kumar, D. D. Malo, J. A. Rice, B. Bleakley, G. Chilom, D. E. Clay, J. L. Julson, and S. K. Papiernik. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. Journal of Hazardous Materials 279:244–56.
  • Cotrufo, M. F. 2013. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Global Change Biology. Bioenergy 5:153–64.
  • Dai, Z., X. Zhang, C. Tang, N. Muhammad, J. Wu, P. C. Brookes, and J. Xu. 2017a. Potential role of biochars in decreasing soil acidification-A critical review. Science of the Total Environment 581:601–11.
  • Dai, Z., X. Zhang, C. Tang, N. Muhammad, J. Wu, P. C. Brookes, and J. Xu. 2017b. Potential role of biochars in decreasing soil acidification - A critical review. Science of the Total Environment 581-582:601.
  • Ding, Z., X. Hu, Y. Wan, S. Wang, and B. Gao. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry 33:239–45.
  • Elmer, W., 2012. Influence of biochar and earthworms on plant growth, Fusarium crown and root rot, and mycorrhizal colonization of asparagus. Acta Horticultura 950, pp. 263–270.
  • Elmer, W. H., and J. J. Pignatello. 2011. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease 95:960–66.
  • El-Naggar, A., S. S. Lee, Y. M. Awad, X. Yang, C. Ryu, M. Rizwan, J. Rinklebe, D. C. Tsang, and Y. S. Ok. 2018. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332:100–08.
  • Eyles, A., S. A. Bound, G. Oliver, R. Corkrey, M. Hardie, S. Green, and D. C. Close. 2015. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees 29:1817–26.
  • Gebbers, R., and V. I. Adamchuk. 2010. Precision agriculture and food security. Science 327:828–31.
  • Gou, M., Y. Qu, H. Yang, J. Zhou, A. Li, X. Guan, and F. Ai. 2008. Sphingomonas sp.: A novel microbial resource for biodegradation of aromatic compounds. Chinese Journal of Applied and Environmental Biology 14:276–82.
  • Gregorich, E. G., N. B. Mclaughlin, D. R. Lapen, B. L. Ma, and P. Rochette. 2014. Soil compaction, both an environmental and agronomic culprit: Increased nitrous oxide emissions and reduced plant nitrogen uptake. Soil Science Society of America Journal 78:1913.
  • Gul, S., and J. K. Whalen. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology & Biochemistry 103:1–15.
  • Gul, S., J. K. Whalen, B. W. Thomas, V. Sachdeva, and H. Deng. 2015b. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206:46–59.
  • Gul, S., J. K. Whalen, B. W. Thomas, V. Sachdeva, and H. Deng. 2015c. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206:46–59.
  • Gul, S., M. Khan, B. Khanday, and S. Nabi. 2015a. Effect of sowing methods and NPK levels on growth and yield of rainfed maize (Zea maysL.). Scientifica 2015: 1–6.
  • Haider, G., D. Steffens, G. Moser, C. Müller, and C. I. Kammann. 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture, Ecosystems & Environment 237:80–94.
  • Harter, J., H.-M. Krause, S. Schuettler, R. Ruser, M. Fromme, T. Scholten, A. Kappler, and S. Behrens. 2014. Linking N 2 O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal 8:660.
  • Hewavitharana, S. S., M. Mazzola, and S. T. DuPont. 2019. Apple replant disease. Pullman, Washington: Washington.
  • Hsieh, E. J., and B. M. Waters. 2016. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: Implications for iron deficiency chlorosis. Journal of Experimental Botany 67:erw328.
  • Huang, P. M., M. K. Wang, and C. Y. Chiu. 2005. Soil mineral–organic matter–microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia - International Journal of Soil Biology 49:609–35.
  • Huang, Q., S. Song, Z. Chen, B. Hu, J. Chen, and X. Wang. 2019. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review. Biochar 1:45–73.
  • Huang, X., Y. Liu, S. Liu, X. Tan, Y. Ding, G. Zeng, Y. Zhou, M. Zhang, S. Wang, and B. Zheng. 2016. Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances 6:94–104.
  • Huang, Z., L. Liao, S. Wang, and G. Cao. 2000. Allelopathy of phenolics from decomposing stump-roots in replant chinese fir woodland. Journal of Chemical Ecology 26:2211–19.
  • Huff, M. D., S. Kumar, and J. W. Lee. 2014. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management 146:303–08.
  • Ibrahim, H. M., M. I. Al-Wabel, A. R. Usman, and A. Al-Omran. 2013. Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science 178:165–73.
  • Igalavithana, A. D., S.-E. Lee, Y. H. Lee, D. C. Tsang, J. Rinklebe, E. E. Kwon, and Y. S. Ok. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere 174:593–603.
  • Inyang, M. I., B. Gao, Y. Ying, Y. Xue, A. Zimmerman, A. Mosa, P. Pullammanappallil, S. O. Yong, and X. Cao. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 46:00–00.
  • Joris, H. A. W., E. F. Caires, A. R. Bini, D. A. Scharr, and A. Haliski. 2013. Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant and Soil 365:409–24.
  • Joseph, S., and J. Lehmann. 2015. Biochar for environmental management: An introduction, Biochar for environmental management, 33–46. New York: Routledge.
  • Khalil, H. A., M. S. Hossain, E. Rosamah, N. Azli, N. Saddon, Y. Davoudpoura, M. N. Islam, and R. Dungani. 2015. The role of soil properties and it’s interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews 43:1006–15.
  • Kim, B., Y. S. Kim, B. M. Kim, A. G. Hay, and M. B. McBride. 2011. Effect of soil metal contamination on glyphosate mineralization: Role of zinc in the mineralization rates of two copper‐spiked mineral soils. Environmental Toxicology and Chemistry 30:596–601.
  • Kloss, S., F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M. H. Gerzabek, and G. Soja. 2012. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41:990–1000.
  • Knowles, O., B. Robinson, A. Contangelo, and L. Clucas. 2011. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Science of the Total Environment 409:3206–10.
  • Kochian, L. V., M. A. Piñeros, J. Liu, and J. V. Magalhaes. 2015. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology 66:571–98.
  • Kong, H., J. He, Y. Gao, H. Wu, and X. Zhu. 2011. Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry 59:12116–23.
  • Kouping, L. U., X. Yang, J. Shen, B. Robinson, H. Huang, D. Liu, N. Bolan, and J. Pei. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment 191:124–32.
  • Kuppusamy, S., P. Thavamani, M. Megharaj, K. Venkateswarlu, and R. Naidu. 2016. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International 87:1.
  • Laghari, M., M. S. Mirjat, Z. Hu, S. Fazal, B. Xiao, M. Hu, Z. Chen, and D. Guo. 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 135:313–20.
  • Laird, D., P. Fleming, B. Wang, R. Horton, and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–42.
  • Lal, R. 2010. Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60:158–69.
  • Lal, R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–95.
  • LeCroy, C., C. A. Masiello, J. A. Rudgers, W. C. Hockaday, and J. J. Silberg. 2013. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. Soil Biology & Biochemistry 58:248–54.
  • Lehmann, J., C. Czimczik, D. Laird, and S. Sohi. 2009. Stability of biochar in soil. In Biochar for Environmental ManagementChapter 11, 169–182. London, UK: Earthscan.
  • Lehmann, J., J. P. da Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil 249:343–57.
  • Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota–a review. Soil Biology & Biochemistry 43:1812–36.
  • Li, H., R. Qu, C. Li, W. Guo, X. Han, F. He, Y. Ma, and B. Xing. 2014a. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology 163:193–98.
  • Li, H., R. Qu, C. Li, W. Guo, X. Han, F. He, Y. Ma, and B. Xing. 2014b. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology 163:193–98.
  • Li, J., L. Pu, M. Han, M. Zhu, R. Zhang, and Y. Xiang. 2014c. Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences 24:943–60.
  • Li, S., H. Deng, C. Rensing, and Y.-G. Zhu. 2014d. Compaction stimulates denitrification in an urban park soil using 15N tracing technique. Environmental Science and Pollution Research 21:3783–91.
  • Lian, F., and B. Xing. 2017. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology 51:13517–32.
  • Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’neill, J. Skjemstad, J. Thies, F. Luizao, and J. Petersen. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70:1719–30.
  • Liang, C., M. A. Piñeros, J. Tian, Z. Yao, L. Sun, J. Liu, J. Shaff, A. Coluccio, L. V. Kochian, and H. Liao. 2013. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology 161:1347–61.
  • Liu, L., G. Shen, M. Sun, X. Cao, G. Shang, and P. Chen. 2014. Effect of biochar on nitrous oxide emission and its potential mechanisms. Journal of the Air & Waste Management Association 64:894–902.
  • Liu, P., W.-J. Liu, H. Jiang, -J.-J. Chen, W. W. Li, and H.-Q. Yu. 2012. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology 121:235–40.
  • Liu, Q., B. Liu, Y. Zhang, Z. Lin, T. Zhu, R. Sun, X. Wang, J. Ma, Q. Bei, and G. Liu. 2017a. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology & Biochemistry 104:8–17.
  • Liu, Q., B. Liu, Y. Zhang, Z. Lin, T. Zhu, R. Sun, X. Wang, J. Ma, Q. Bei, G. Liu, et al. 2017b. Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biology & Biochemistry 104:8–17.
  • Lu, H., W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu. 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research 46:854–62.
  • Lu, L., T. Huggins, S. Jin, Y. Zuo, and Z. J. Ren. 2014. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environmental Science & Technology 48:4021–29.
  • Machado, R., and R. Serralheiro. 2017. Soil salinity: Effect on vegetable crop growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 3(2):1–13.
  • Manici, L., M. Kelderer, I. Franke-Whittle, T. Rühmer, G. Baab, F. Nicoletti, F. Caputo, A. Topp, H. Insam, and A. Naef. 2013. Relationship between root-endophytic microbial communities and replant disease in specialized apple growing areas in Europe. Applied Soil Ecology 72:207–14.
  • Masiello, C. A., C. Ye, G. Xiaodong, L. Shirley, C. Hsiao-Ying, M. R. Bennett, J. A. Rudgers, D. S. Wagner, Z. Kyriacos, and J. J. Silberg. 2013. Biochar and microbial signaling: Production conditions determine effects on microbial communication. Environmental Science & Technology 47:11496–503.
  • Mazzola, M. 1998. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–38.
  • Mazzola, M., and L. M. Manici. 2012. Apple replant disease: role of microbial ecology in cause and control. Annual Review of Phytopathology 50:45.
  • Mcdowell, R. W., and A. N. Sharpley. 2001. Approximating phosphorus release from soils to surface runoff and subsurface drainage. Journal of Environmental Quality 30:508–20.
  • Mehari, Z. H., Y. Elad, D. Rav-David, E. R. Graber, and Y. M. Harel. 2015. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil 395:31–44.
  • Mohanty, P., S. Nanda, K. K. Pant, S. Naik, J. A. Kozinski, and A. K. Dalai. 2013. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. Journal of Analytical and Applied Pyrolysis 104:485–93.
  • Mondal, S., K. Bobde, K. Aikat, and G. Halder. 2016. Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: Equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. Journal of Environmental Management 182:581–94.
  • Mosa, A., M. F. El-Banna, and B. Gao. 2016. Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.). Grown in Nutrient Film Technique Hydroponic System. Chemosphere 149:254–62.
  • Na, L., H. Xiaozeng, Y. Mengyang, and X. Yuzhi. 2013. Research review on soil aggregates and microbes. Ecology and Environmental Sciences 22:1625–32.
  • Nada, M., S. Petar, and C. Gorica, 2010. Microorganisms as bioindicators of pollutants in soil. Ratarstvo I Povrtarstvo.
  • Nannipieri, P., J. Ascher, M. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. European Journal of Soil Science 54:655–70.
  • Nelissen, V., T. Rütting, D. Huygens, J. Staelens, G. Ruysschaert, and P. Boeckx. 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology & Biochemistry 55:20–27.
  • Nicola, L., E. Turco, D. Albanese, C. Donati, M. Thalheimer, M. Pindo, H. Insam, D. Cavalieri, and I. Pertot. 2017. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Applied Soil Ecology 113:71–79.
  • Novotny, E. H., C. M. B. D. F. Maia, M. T. D. M. Carvalho, and B. E. Madari. 2015. Biochar: Pyrogenic carbon for agricultural use - a critical review. Revista Brasileira De Ciência Do Solo 39:321–44.
  • Obalum, S. E., G. U. Chibuike, S. Peth, and Y. Ouyang. 2017. Soil organic matter as sole indicator of soil degradation. Environmental Monitoring and Assessment 189:176.
  • Ok, Y. S., S. X. Chang, B. Gao, and H.-J. Chung. 2015. SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation 4:206–09.
  • Oliveira, F. R., A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal. 2017. Environmental application of biochar: Current status and perspectives. Bioresource Technology 246:110–22.
  • Palansooriya, K. N., J. T. F. Wong, Y. Hashimoto, L. Huang, J. Rinklebe, S. X. Chang, N. Bolan, H. Wang, and Y. S. Ok. 2019. Response of microbial communities to biochar-amended soils: A critical review. Biochar 1:3–22.
  • Paul, E. A. 2014. Soil microbiology, ecology and biochemistry. Country San Diego, United States, Academic press.
  • Pimchuai, A., A. Dutta, and P. Basu. 2010. Torrefaction of agriculture residue to enhance combustible properties. Energy & Fuels 24: 4638–4645.
  • Rajapaksha, A. U., S. S. Chen, D. C. W. Tsang, Z. Ming, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and S. O. Yong. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148:276–91.
  • Randolph, P., R. Bansode, O. Hassan, D. Rehrah, R. Ravella, M. Reddy, D. Watts, J. Novak, and M. Ahmedna. 2017a. Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management 192:271–80.
  • Randolph, P., R. R. Bansode, O. A. Hassan, D. Rehrah, R. Ravella, M. R. Reddy, D. W. Watts, J. M. Novak, and M. Ahmedna. 2017b. Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management 192:271–80.
  • Reddy, K. R. 2015. Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology 45:939–69.
  • Reddy, P. A. K., P. V. L. Reddy, E. Kwon, K.-H. Kim, T. Akter, and S. Kalagara. 2016. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International 91:94–103.
  • Rousseau, L., S. J. Fonte, O. Téllez, R. V. D. Hoek, and P. Lavelle. 2013. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators 27:71–82.
  • Safaei Khorram, M., G. Zhang, A. Fatemi, R. Kiefer, K. Maddah, M. Baqar, M. P. Zakaria, and G. Li. 2019. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4‐year field study. Journal of the Science of Food and Agriculture 99:1862–69.
  • Schmidt, M. W. I., M. S. Torn, A. Samuel, D. Thorsten, G. Georg, I. A. Janssens, K. Markus, K. G. K. Ingrid, L. Johannes, and D. A. C. Manning. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.
  • Shaheen, S. M., and J. Rinklebe. 2015. Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering 74:319–26.
  • Shi, J.-Y., X.-F. Yuan, H.-R. Lin, Y.-Q. Yang, and Z.-Y. Li. 2011. Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. International Journal of Molecular Sciences 12:3770–85.
  • Shi, Q., and Z. Zhu. 2008. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany 63:317–26.
  • Simon, M., E. Lehndorff, A. Wrede, and W. Amelung. 2020. In-field heterogeneity of apple replant disease: Relations to abiotic soil properties. Scientia Horticulturae 259:108809.
  • Sims, G. K. 1990. Biological degradation of soil. In Advances in soil science: Soil degradation volume 11, ed. R. Lal and B. A. Stewart, 289–330. New York, NY: Springer.
  • Singh, A. 2015. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators 57:128–30.
  • Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology 67:4742–51.
  • Smith, P., J. I. House, M. Bustamante, J. Sobocká, R. Harper, G. Pan, P. C. West, J. M. Clark, T. Adhya, and C. Rumpel. 2016a. Global change pressures on soils from land use and management. Global Change Biology 22:1008–28.
  • Smith, P., J. I. House, M. Bustamante, J. Sobockã, R. Harper, G. Pan, P. C. West, J. M. Clark, T. Adhya, and C. Rumpel. 2016b. Global change pressures on soils from land use and management. Global Change Biology 22:1008–28.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in agronomy 105: 47–82.
  • Suliman, W., J. B. Harsh, N. I. Abu-Lail, A.-M. Fortuna, I. Dallmeyer, and M. Garcia-Perez. 2016. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass & Bioenergy 84:37–48.
  • Sun, K., K. Ro, M. Guo, J. Novak, H. Mashayekhi, and B. Xing. 2011. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology 102:5757–63.
  • Sun, Y., B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, H. Chen, and L. Yang. 2014. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240:574–78.
  • Tan, X., S. X. Chang, and R. Kabzems. 2008. Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biology and Fertility of Soils 44:471–79.
  • Tewoldemedhin, Y. T., M. Mazzola, I. Labuschagne, and A. McLeod. 2011. A multi-phasic approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biology & Biochemistry 43:1917–27.
  • Ventura, M., G. Sorrenti, P. Panzacchi, E. George, and G. Tonon. 2013. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. Journal of Environmental Quality 42:76–82.
  • von Glisczynski, F., A. Sandhage-Hofmann, W. Amelung, and R. Pude. 2016. Biochar-compost substrates do not promote growth and fruit quality of a replanted German apple orchard with fertile Haplic Luvisol soils. Scientia Horticulturae 213:110–14.
  • Wan, Q., J.-H. Yuan, R.-K. Xu, and X.-H. Li. 2014. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil. Environmental Science and Pollution Research 21:2486–95.
  • Wang, S., B. Gao, A. R. Zimmerman, Y. Li, L. Ma, W. G. Harris, and K. W. Migliaccio. 2015. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–62.
  • Wang, Y., F. Pan, G. Wang, G. Zhang, Y. Wang, X. Chen, and Z. Mao. 2014. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Scientia Horticulturae 175:9–15.
  • Wang, Y., Z. Ma, X. Wang, Q. Sun, H. Dong, G. Wang, X. Chen, C. Yin, Z. Han, and Z. Mao. 2019. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Scientia Horticulturae 256:108641.
  • Warnock, D. D., D. L. Mummey, B. McBride, J. Major, J. Lehmann, and M. C. Rillig. 2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Applied Soil Ecology 46:450–56.
  • Weber, K., and P. Quicker. 2018. Properties of biochar. Fuel 217:240–61.
  • Windeatt, J. H., A. B. Ross, P. T. Williams, P. M. Forster, M. A. Nahil, and S. Singh. 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management 146:189–97.
  • Winkelmann, T., K. Smalla, W. Amelung, G. Baab, G. Grunewaldt-Stöcker, X. Kanfra, R. Meyhöfer, S. Reim, M. Schmitz, and D. Vetterlein. 2019. Apple Replant Disease: Causes and Mitigation Strategies. Current Issues in Molecular Biology 30:89–106.
  • Xiao, X., B. Chen, Z. Chen, L. Zhu, and J. L. Schnoor. 2018a. Insight into multiple and multi-level structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology 52:acs.est.7b06487.
  • Xiao, X., B. Chen, Z. Chen, L. Zhu, and J. L. Schnoor. 2018b. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology 52:5027–47.
  • Yang, Z.-B., I. M. Rao, and W. J. Horst. 2013. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant and Soil 372:3–25.
  • Yao, Y., B. Gao, M. Zhang, M. Inyang, and A. R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–71.
  • Yin, C., X. Li, G. Wang, Y. Wang, S. Xiang, X. Chen, and Z. Mao. 2017. Phloridzin promotes the growth of Fusarium moniliforme (Fusarium verticillioides). Scientia Horticulturae 214:187–94.
  • Yu, H., W. Zou, J. Chen, H. Chen, Z. Yu, J. Huang, H. Tang, X. Wei, and B. Gao. 2019. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management 232:8–21.
  • Yu, X.-Y., -G.-G. Ying, and R. S. Kookana. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–71.
  • Yuan, J. H., and R. K. Xu. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management 27:110–15.
  • Yuan, X., T. Song, J. Yang, X. Huang, and J. Shi. 2019. Changes of microbial community in the rhizosphere soil of Atractylodes macrocephala when encountering replant disease. South African Journal of Botany 127:129–35.
  • Zhang, K., X. Cheng, H. Dang, C. Ye, Y. Zhang, and Q. Zhang. 2013. Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biology & Biochemistry 57:803–13.
  • Zhang, R., Y. Zhang, L. Song, X. Song, H. Hänninen, and J. Wu. 2017. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. Forest Ecology and Management 391:321–29.
  • Zhang, Z., and W. Wang. 2010. Progress on formation mechanism and control measurements of continuous cropping obstacles in plants. Journal of Biology 27:69–72.
  • Zhao, L., X. Cao, O. Mašek, and A. Zimmerman. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256-257:1–9.
  • Zhu, H., and B. Yang. 2010. Preliminary comparison of herbicidal activity of mycotoxins produced by Lecanosticta acicola and four species in genus Mycosphaerella. Journal of Southwest Forestry University 30:33–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.