341
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Exogenous Zinc Induced NaCl Tolerance in Okra (Abelmoschus Esculentus) by Ameliorating Osmotic Stress and Oxidative Metabolism

, , , , , , , ORCID Icon, , , ORCID Icon, & show all
Pages 743-755 | Received 08 May 2020, Accepted 14 Dec 2020, Published online: 05 Jan 2021

References

  • Abbas, T., R. Balal, M. Shahid, M. A. Pervez, C. M. Ayyub, M. A. Aqueel, and M. M. Javaid. 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum 37:6–21.
  • Abbasi, G. H., J. Akhtar, M. A. Haq, S. Ali, Z. Chen, and W. Malik. 2014. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany 46:135–46.
  • Abbasi, G. H., J. Akhtar, R. Ahmad, M. Jamil, M. A. Haq, S. Ali, and M. Ijaz. 2015. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regulations 76:111–25.
  • Agarwal, P., and P. Khurana. 2018. Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring heat stress tolerance in Arabidopsis. Cell Stress Chapter 23:253–67.
  • Ahammed, G. J., Y. Li, X. Li, W. Y. Han, and S. Chen. 2018. Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. Journal of Plant Growth Regulation 37:1349–56.
  • Ahanger, M. A., N. A. Akram, M. Ashraf, M. N. Alyemeni, L. Wijaya, and P. Ahmad. 2017. Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9:1–17.
  • Ahmed, S. 2009. Effect of soil salinity on the yield and yield components of mungbean. Pakistan Journal of Botany 4:263–68.
  • Akman, Z. 2009. Effects of plant growth regulators on nutrient content of young wheat and barley plants under saline conditions. Journal of Animal and Veterinary Advances 8:2018–21.
  • Ali, A., N. Raddatz, R. Aman, S. Kim, H. C. Park, M. Jan, and R. A. Bressan. 2016. A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiology 171:2112–26.
  • Aliniaeifard, S., J. Hajilou, and S. J. Tabatabaei. 2016. Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44:579–85.
  • Asad, A., and R. Rafique. 2002. Identification of micronutrient deficiency of wheat in the Peshawar valley, Pakistan. Communications in Soil Science and Plant Analysis 33:349–64.
  • Bastam, N., B. Baninasab, and C. Ghobadi. 2013. Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regulations 69:275–84.
  • Chance, B., and A. C. Maehly. 1955. Assay of catalases and peroxidases. Method Enzymology 2:764–75.
  • Dai, H., S. Wei, L. Skuza, and G. Jia. 2019. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. Ecotoxicology and Environmental Safety 180:179–84.
  • Farooq, M., M. Hussain, A. Wakeel, & Siddique, Kadambot H. M. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461–481.
  • Flowers, T. J., and T. D. Colmer. 2015. Plant salt tolerance: Adaptations in halophytes. Annals of Botany 115:327–31.
  • Geddie, A. W., and S. G. Hall. 2019. The effect of salinity and alkalinity on growth and the accumulation of copper and zinc in the Chlorophyta Ulva fasciata. Ecotoxicology and Environmental Safety 172:203–09.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59:309–14.
  • Hezaveh, T. A., L. Pourakbar, F. Rahmani, and H. Alipour. 2019. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Communications in Soil Science and Plant Analysis 50:698–715.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricuktural Experiment Station Circular 347:1–32.
  • Hussain, A., S. Ali, M. Rizwan, M. Z. Rehman, M. Javed, M. Imran, and R. Nazir. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution 242:1518–26.
  • Hussein, M. M., and N. H. Abou-Baker. 2018. The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science 5:1–11.
  • Jing, X., P. Hou, Y. Lu, S. Deng, N. Li, R. Zhao, and M. Ding. 2015. Over expression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Frontiers in Plant Science 5:23–35.
  • Khan, A. A., I. A. Khan, and M. A. Azmat. 2012. Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny. Journal of Zhejiang University. Science. B 13:533–44.
  • Khan, M. A., I. A. Ungar, and A. M. Showalter. 2000. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environment 45:73–84.
  • Khan, M. I. R., M. Asgher, and N. A. Khan. 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vignaradiata L.). Plant Physiology and Biochemistry 80:67–74.
  • Koyro, H. W. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany 56:136–46.
  • Kumari, J., P. Udawat, A. K. Dubey, M. I. Haque, M. S. Rathore, and B. Jha. 2017. Overexpression of SbSI-1, A nuclear protein from salicornia brachiata confers drought and salt stress tolerance and maintains photosynthetic efficiency in transgenic tobacco. Frontiers in Plant Science 13:12–15.
  • Lazcano-Ferrat, I., and C. J. Lovatt. 1999. Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Science 39:467–75.
  • Liang, W., X. Ma, P. Wan, and L. Liu. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysics Research Communications 495:286–91.
  • Morshedi, A., and H. Farahbakhsh. 2012. The role of potassium and zinc in reducing salinity and alkalinity stress conditions in two wheat genotypes. Archives of Agronomy and Soil Science 58:371–84.
  • Munns, R., and M. Gilliham. 2015. Salinity tolerance of crops–what is the cost? New Phytologist 208:668–73.
  • Nahar, K., M. Hasanuzzaman, M. M. Alam, and M. Fujita. 2015. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vignaradiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany 112:44–54.
  • Naqve, M., M. Shahbaz, A. Wahid, and E. A. Waraich. 2018. Seed priming with alpha tocopherol improves morpho-physiological attributes of okra under saline conditions. International Journal of Agriculture and Biology 20:2647–54.
  • Negrao, S., S. M. Schmockel, and M. Tester. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany 119:1–11.
  • Pitzschke, A., C. Forzani, and H. Hirt. 2006. Reactive oxygen species signaling in plants. Antioxidants & Redox Signaling 8:1757–64.
  • Porra, R. J., W. A. Thompson, and P. E. Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta Bioenergetica 975:384–94.
  • Prochazkova, D., R. K. Sairam, G. C. Srivastava, and D. V. Singh. 2001. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science 161:765–71.
  • Qadir, M., E. Quillérou, V. Nangia, G. Murtaza, M. Singh, R. J. Thomas, and A. D. Noble. 2014. Economics of salt induced land degradation and restoration. Natural Resources Forum 38:282–95.
  • Rehman, A., M. Farooq, L. Ozturk, M. Asif, and K. H. Siddique. 2018. Zinc nutrition in wheat- based cropping systems. Plant and Soil 422:283–315.
  • Rostami, M., R. M. TalarposhtI, H. Mohammadi, and M. S. Demyan. 2019. Morpho-physiological response of Saffron (Crocus Sativus L.) to particle size and rates of zinc fertilizer. Communications in Soil Science and Plant Analysis 50:1250–57.
  • Saeidnejad, A. H., and M. Kafi. 2013. Alleviative effects of Zinc on physiological properties and antioxidants activity of maize plants under salinity stress. International Journal of Agriculture and Crop Sciences 5:529–37.
  • Saha, J., E. K. Brauer, A. Sengupta, S. C. Popescu, K. Gupta, and B. Gupta. 2015. Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science 3:1–13.
  • Sairam, R. K., and D. C. Saxena. 2000. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science 184:55–61.
  • Shabala, S., and I. Pottosin. 2014. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151:257–79.
  • Shahsavari, N. 2019. Effects of Zeolite and Zinc on quality of Canola (Brassica napus L.) under late season drought stress. Communications in Soil Science and Plant Analysis 50:1117–22.
  • Stavridou, E., A. Hastings, R. J. Webster, and P. R. Robson. 2017. The impact of soil salinity on the yield, composition and physiology of the bioenergy grass. Miscanthus Giganteus. GCB Bioenergy 9:92–104.
  • Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 2007. Principles and procedures of statistics: A biometrical approach. 3rd ed. New York: McGraw Hill Book Co.
  • Suzuki, N., S. H. A. I. Koussevitzky, R. O. N. Mittler, and G. A. D. Miller. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment 35:259–70.
  • Tanveer, M., and S. Shabala. 2018. Targeting redox regulatory mechanisms for salinity stress tolerance in crops. Springer, Cham. Salinity Responses and Tolerance in Plants 1:213–34.
  • Tavallali, V., M. Rahemi, S. Eshghi, B. Kholdebarin, and A. Ramezanian. 2010. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L.‘Badami’) seedlings. Turkish Journal of Agriculture and Forestry 34:349–59.
  • Wang, Y. H., G. Zhang, Y. Chen, J. Gao, Y. R. Sun, M. F. Sun, and J. P. Chen. 2019. Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiologiae Plantarum 41:93–104.
  • Weisany, W., Y. Sohrabi, G. Heidari, A. Siosemardeh, and H. Badakhshan. 2014. Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). Journal of Plant Nutrition 37:2255–69.
  • Yang, X., and C. Lu. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐ stressed maize plants. Physiologia Plantarum 124:343–52.
  • Yu, C., Q. Wu, C. Sun, M. Tang, J. Sun, and Y. Zhan. 2019. The phosphoproteomic response of Okra (Abelmoschus esculentus L.) Seedlings to salt stress. International Journal of Molecular Sciences 20:1262–80.
  • Zafar, S., M. Y. Ashraf, and M. Saleem. 2018. Shift in physiological and biochemical processes in wheat supplied with zinc and potassium under saline condition. Journal of Plant Nutrition 41:19–28.
  • Zandalinas, S. I., R. Mittler, D. Balfagón, V. Arbona, and A. Gómez Cadenas. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162:2–12.
  • Zhang, J., W. Jia, J. Yang, and A. M. Ismail. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Research 97:111–19.
  • Zhu, M., M. Zhou, L. Shabala, and S. Shabala. 2017. Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant, Cell & Environment 40:1009–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.