139
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Impact of Silicon on Chemical Properties of Drainage Water from Lettuce Following Determination of Proper Cultivar and Light Spectrum

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 756-768 | Received 19 Oct 2019, Accepted 10 Dec 2020, Published online: 03 Jan 2021

References

  • Adatia, M. H., and R. T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Life, Earth and Health Science 58:343–51. https://eurekamag.com/research/001/485/001485086.php.
  • Aliniaeifard, S., M. Seif, M. Arab, M. Zare Mehrjerdi, T. Li, and O. Lastochkina. 2018. Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International Journal of Horticultural Science and Technology 5:123–32. doi:10.22059/ijhst.2018.261042.248.
  • Balakhnina, T., and A. Borkowska. 2013. Effects of silicon on plant resistance to environmental stresses. International Agrophysics,Rome, Italy 27:225–32. doi:10.2478/v10247-012-0089-4.
  • Baudoin, W., R. N. Womdim, N. Lutaladio, and A. Hodder. 2013. FAO Plant Production and Protection, 217. Good Agricultural Practices for Greenhouse Vegetable Crops.
  • Bayat, L., M. Arab, S. Aliniaeifard, M. Seif, O. Lastochkina, and T. Li. 2018. Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB PLANTS 10:ply052. doi:10.1093/aobpla/ply052.
  • Boyer, J. S. 1982. Insights into late embryogenesis abundant (LEA) proteins in plants: From structure to the functions. Plant Productivity and Environment Science 218:443–48. doi:10.1126/science.218.4571.443.
  • Chen, D., B. Cao, L. Qi, L. Yin, S. Wang, and X. Deng. 2016. Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Annals of Botany 18 (2):305–15. doi:10.1093/aob/mcw111.
  • Chen, M., J. Chory, and C. Fankhauser. 2004. Light signal transduction in higher plants. Annually Review Genet 38:87–117. doi:10.1146/annurev.genet.38.072902.092259.
  • Conde, A., M. Chaves, and H. Gerós. 2011. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant and Cell Physiology 52 (9):1583–602. doi:10.1093/pcp/pcr107.
  • Deren, C. 2001. Plant genotype, silicon concentration, and silicon-related responses. Studies in Plant Science 8:149–58. doi:10.1016/S0928-3420(01)80012-4.
  • Epstein, E. 1991. The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17. doi:10.1073/pnas.91.1.11.
  • Epstein, E. 1999. Silicon – annual review of plant physiology. Plant Biology 50:641–64. doi:10.1146/annurev.arplant.50.1.641.
  • European and National Drinking Water Quality Standards. 2011. Northern Ireland Environment Agency, organizational publication, Geneva, Switzerland.
  • Evans, G. C., and A. P. Hughes. 1961. Plant growth and the aerial environment. New Phytology 60:150–80. doi:10.1111/j.1469-8137.1961.tb06249.x.
  • Fukuda, N., M. Fujita, Y. Ohta, S. Sase, S. Nishimura, and H. Ezura. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Scientia Horticulturae 115 (2):176–82. doi:10.1016/j.scienta.2007.08.006.
  • Gorbe, E., and A. Calatayud. 2010. Optimization of nutrition in soilless systems: A review. Advanced in Botanical Research 53 (1):193–245. doi:10.1016/S0065-2296(10)53006-4.
  • Gunes, A., E. Inal, G. Bagci, S. Coban, and O. Sahin. 2007. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum 51 (3):571–74. doi:10.1007/s10535-007-0125-6.
  • Guntzer, F., C. Keller, and J. D. Meunier. 2012. Benefits of plant silicon for crops: A review. Agronomy Sustain 32:201–13. doi:10.1007/s13593-011-0039-8.
  • Hell, R., and R. R. Mendel. 2010. Cell biology of metals and nutrients. Plant Cell Monographs. doi:10.1007/978-3-642-10613-2.
  • Hosseini, A., M. Zare Mehrjerdi, S. Aliniaeifard, and M. Seif. 2019. Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiology and Molecular Biology of Plants 25:741–52. doi:10.1007/s12298-019-00647-7.
  • Huett, D. O., and E. B. Dettmann. 1992. Nutrient uptake and partitioning by zucchini squash, head lettuce and potato in response to nitrogen. Australian Journal of Agriculture Research 43:1653–65. http://agris.fao.org/agris-search/search.do?recordID=US201301761406.
  • Inanaga, S., and A. Okasaka. 1995. Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Natural 41:103–10. doi:10.1080/00380768.1995.10419563.
  • Jacks, G., and V. Sharma. 1983. Nitrogen circulation and nitrate in ground water in an agricultural catchment in southern India. Environmental Geology 5 (2):61–64. doi:10.1007/BF02381097.
  • Karam, F., R. Lahoud, R. Masaad, R. Kabalan, J. Breidi, C. Chalita, and Y. Rouphael. 2007. Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions. Agricultural Water Management 90 (3):213–23. doi:10.1016/j.agwat.2007.03.009.
  • Lauchi, A., and E. Epstein. 1990. Plant responses to saline and sodic conditions. American Society of Civil Engineering. Agricultural Salinity Assessment and Management 71:113–37.
  • Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems 80 (3):333–40. doi:10.1007/s10457-010-9299-6.
  • Lefsrud, M. G., D. A. Kopsell, and C. E. Sams. 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. Horticulture Science 43:2243–44. doi:10.21273/HORTSCI.43.7.2243.
  • Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67:59–64. doi:10.1016/j.envexpbot.2009.06.011.
  • Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang, and C. M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150:86–91. doi:10.1016/j.scienta.2012.10.002.
  • Ma, J. F., and E. Takahashi. 2002. Soil, fertilizer and plant silicon research in Japan. https://www.elsevier.com/books/soil-fertilizer-and-plant-silicon-research-in-japan/ma/978-0-444-51166-9.
  • Ma, J. F., N. Yamaji, and N. Mitani-Ueno. 2011. Transport of silicon from roots to panicles in plants. Physics Biological Science 87:377–85. doi:10.2183/pjab.87.377.
  • McCree, K. J. 1972. The action spectrum, absorbance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9:191–216. doi:10.1016/0002-1571(71)90022-7.
  • Neuman, D., and C. De Figueiredo. 2002. A novel mechanism of silicon uptake. Protoplasma 220.1-2 (2002): 0059–0067
  • Nieves-Cordones, M., R. Rodenas, A. Lara, V. Martinez, and F. Rubio. 2019. The combination of K+ deficiency with other environmental stresses: What is the outcome? Physiol Plant 165:264–76. doi:10.1111/ppl.12827.
  • Ohashi-Kaneko, M., N. Takase, K. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna Environ. Control Biology 45:189–98. doi:10.2525/ecb.45.189.
  • Oster, J. D. 1994. Irrigation with poor quality water. Agriculture Water Management 25:271–97. doi:10.1016/0378-3774(94)90064-7.
  • Ouzounis, T., E. Rosenqvist, and C. Ottosen. 2015. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. Horticulture Science 50 (8):1128–35. doi:10.21273/HORTSCI.50.8.1128.
  • Pardossi, A., F. Malorgio, L. Incrocci, G. Carmassi, R. Maggini, D. Massa, and F. Tognoni. 2006. Simplified models for the water relations of soilless cultures: What they do or suggest for sustainable water use in intensive horticulture. Acta Horticulture 718:425–34. doi:10.17660/ActaHortic.2006.718.49.
  • Parry, D. W., and M. Kelso. 1975. The distribution of silicon deposits in the root Molina caerulea (L.) Moench and Sorghum bicolor (L.) Moench. Annals of Botany 39:995–1001. https://www.jstor.org/stable/42756333.
  • Priestley, J. H. 1920. The mechanism of root pressure. New Phytologist 19 (7):189–99. doi:10.1111/j.1469-8137.1920.tb07326.x.
  • Ragel, P., N. Raddatz, E. O. Leidi, F. J. Quintero, and J. M. Pardo. 2019. Regulation of K+ nutrition in plants. Frontiers in Plant Science 10:28. doi:10.3389/fpls.2019.00281.
  • Richmond, K. E., and M. Sussman. 2003. Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biology 6:268–72. https://www.ncbi.nlm.nih.gov/pubmed/12753977.
  • Rodrigues, F. A., and L. E. Datnoff. 2015. Silicon and Plant Diseases, 67–100. Berlin/Heidelberg, Germany: Springer.
  • Rouphael, Y., M. Cardarelli, P. Franken, and D. Schwarz. 2012. Plant Responses to Drought Stress. Chapter 7. Berlin: Springerdoi:10.1007/978-3-642-32653-0_7.
  • Savvas, D. 2001. Nutritional management of vegetables and ornamental plants in hydroponics. Crop Management and Postharvest Handling of Horticultural Products 1, 37–87.
  • Savvas, D. 2003. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. Journal of Food Agriculture and Environment 1:80–86.
  • Silber, A., and A. Bar-Tal. 2008. Nutrition of Substrate-grown Plants2008:291–339. Chapter 8. San Diego (CA): Elsevier. doi:10.1016/B978-044452975-6.50010-1.
  • Silva, A. T., R. C. Avelino, L. P. Brito, J. C. Anjos, J. V. Júnior, and M. Z. Cavalcante. 2018. Growth and yield of lettuce cultivars under organic fertilization and different environments. Comunicata Scientiae 8 (2):265–74. doi:10.14295/cs.v8i2.2167.
  • Sonneveld, K. 2000. What drives (food) packaging innovation? Technology and Science 13 (1):29–35. doi:10.1002/(SICI)1099-1522(200001/02)13.
  • Wang, H., M. Gu, J. Cui, K. Shi, Y. Zhou, and J. Yu. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Photochem Photobiol Biology 96:30–37. doi:10.1016/j.jphotobiol.2009.03.010.
  • Yu, W., Y. Liu, L. Song, D. F. Jacobs, X. Du, Y. Ying, Q. Shao, and J. Wu. 2017. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation 36:148–60. doi:10.1007/s00344-016-9625-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.