150
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of Exogenous Glucose on Soil Organic Carbon Sequestration and Carbon Metabolism in Root of Malus baccata (L.) Bork

, , , &
Pages 2838-2852 | Received 21 Jan 2022, Accepted 21 Jun 2022, Published online: 01 Jul 2022

References

  • Alberti, G., S. Vicca, I. Inglima, L. Belelli-Marchesini, L. Genesio, F. Miglietta, H. Marjanovic, C. Martinez, G. Matteucci, E. Andrea, et al. 2015. Soil C:N stoichiometry controls carbon sink partitioning between above-ground tree biomass and soil organic matter in high fertility forests. iForest - Biogeosciences and Forestry 8 (2):195–206. doi:10.3832/ifor1196-008.
  • An, T., S. Schaeffer, J. Zhuang, M. Radosevich, S. Li, H. Li, J. Pei, and J. Wang. 2015. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the black soil region of northeast China. Biology and Fertility of Soils 51 (5):605–13. doi:10.1007/s00374-015-1006-3.
  • Atkinson, D, E. 1968. Energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7 (11):4030–34. doi:10.1021/bi00851a033.
  • Badia, M. B., C. L. Arias, M. A. Tronconi, V. G. Maurino, C. S. Andreo, M. F. Drincovich, and M. C. G. Wheeler. 2015. Enhanced cytosolic NADP-ME2 activity in A. thaliana affects plant development, stress tolerance and specific diurnal and nocturnal cellular processes. Plant Science 240 (Supplement C):193–203. doi:10.1016/j.plantsci.2015.09.015.
  • Bastida, F., I. F. Torres, T. Hernández, P. Bombach, H. H. Richnow, and C. García. 2013. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biology & Biochemistry 57:892–902. doi:10.1016/j.soilbio.2012.10.037.
  • Blagodatskaya, E., T. Yuyukina, S. Blagodatsky, and Y. Kuzyakov. 2011. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biology & Biochemistry 43 (4):778–86. doi:10.1016/j.soilbio.2010.12.011.
  • Borek, S., and K. Nuc. 2011. Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. Journal of Plant Physiology 168 (15):1795–803. doi:10.1016/j.jplph.2011.05.016.
  • Cambardella, C. A., and E. T. Elliott. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56 (3):777–83. doi:10.2136/sssaj1992.03615995005600030017x.
  • Chen, F. X., X. H. Liu, and L. S. Chen. 2009. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chemistry 114 (2):657–64. doi:10.1016/j.foodchem.2008.10.003.
  • Cui, X. H., H. N. Murthy, C. H. Wu, and K. Y. Paek. 2010. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell, Tissue and Organ Culture 103 (1):7–14. doi:10.1007/s11240-010-9747-z.
  • Dijkstra, F. A., B. Zhu, and W. Cheng. 2021. Root effects on soil organic carbon: A double-edged sword. New Phytologist 230 (1):60–65. doi:10.1111/nph.17082.
  • Fansler, S. J., J. L. Smith, H. Bolton, and V. L. Bailey. 2005. Distribution of two C cycle enzymes in soil aggregates of a prairie chronosequence. Biology and Fertility of Soils 42 (1):17–23. doi:10.1007/s00374-005-0867-2.
  • Fernie, A. R., F. Carrari, and L. J. Sweetlove. 2004. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7 (3):254–61. doi:10.1016/j.pbi.2004.03.007.
  • Ge, S. F., Y. H. Ren, L. Peng, H. G. Xu, M. M. Ji, S. C. Wei, and Y. M. Jiang. 2014. Effects of soil C/N ratio on apple growth and nitrogen utilization, residue and loss. Asian Agricultural Research 6 (2):1–5.
  • Ge, T., B. Li, Z. Zhu, Y. Hu, H. Yuan, M. Dorodnikov, D. L. Jones, J. Wu, and Y. Kuzyakov. 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils 53 (1):37–48. doi:10.1007/s00374-016-1155-z.
  • Gupta, A., M. Singh, and A. Laxmi. 2015. The interaction between glucose and brassinosteroid signal transduction pathway in Arabidopsis thaliana. Plant Physiology 168 (1):307–20. doi:10.1104/pp.114.256313.
  • Hao, M., H. Hu, Z. Liu, Q. Dong, K. Sun, Y. Feng, G. Li, and T. Ning. 2019. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Applied Soil Ecology 136:43–54. doi:10.1016/j.apsoil.2018.12.016.
  • Hatzig, S., A. Kumar, A. Neubert, and S. Schubert. 2010. PEP-carboxylase activity: A comparison of its role in a c4 and a c3 species under salt stress. Journal of Agronomy and Crop Science 196 (3):185–92. doi:10.1111/j.1439-037X.2009.00403.x.
  • Jardine, K. J., E. D. Sommer, S. R. Saleska, T. E. Huxman, P. C. Harley, and L. Abrell. 2010. Gas phase measurements of pyruvic acid and its volatile metabolites. Environmental Science & Technology 44 (7):2454–60. doi:10.1021/es903544p.
  • Jiao, J. A., and R. Chollet. 1991. Posttranslational regulation of phosphoenolpyruvate carboxylase in C₄ and crassulacean acid metabolism plants. Plant Physiology 95 (4):981–85. doi:10.1104/pp.95.4.981.
  • Li, S., S. Zhang, Y. Pu, T. Li, X. Xu, Y. Jia, O. Deng, and G. Gong. 2016. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu plain. Soil and Tillage Research 155:289–97. doi:10.1016/j.still.2015.07.019.
  • Li, Z., R. L. Schneider, S. J. Morreale, Y. Xie, C. Li, and J. Li. 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 310:143–52. doi:10.1016/j.geoderma.2017.09.009.
  • Liu, H., Y. Jiang, Y. Luo, and W. Jiang. 2006. A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography. Food Technology and Biotechnology 4 (44):531–34.
  • Liu, H., X. Huang, W. Tan, H. Di, J. Xu, and Y. Li. 2020. High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations. Soil Ecology Letters 2 (2):104–19. doi:10.1007/s42832-020-0032-8.
  • Mason-Jones, K., A. Gilmullina, and Y. Kuzyakov. 2017. Mineralization of “non-metabolizable” glucose analogues in soil: Potential chemosensory mimics of glucose. Journal of Plant Nutrition and Soil Science 180 (2):165–68. doi:10.1002/jpln.201600204.
  • Meena, V. S., S. K. Meena, J. P. Verma, A. Kumar, A. Aeron, P. K. Mishra, J. K. Bisht, A. Pattanayak, M. Naveed, and M. L. Dotaniya. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering 107:8–32. doi:10.1016/j.ecoleng.2017.06.058.
  • Mendoza, O., S. De Neve, H. Deroo, H. Li, and S. Sleutel. 2022. Do interactions between application rate and native soil organic matter content determine the degradation of exogenous organic carbon? Soil Biology & Biochemistry 164:108473. doi:10.1016/j.soilbio.2021.108473.
  • Nie, M., and E. Pendall. 2016. Do rhizosphere priming effects enhance plant nitrogen uptake under elevated CO2? Agriculture, Ecosystems & Environment 224:50–55. doi:10.1016/j.agee.2016.03.032.
  • Nunes-Nesi, A., A. R. Fernie, and M. Stitt. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant 3 (6):973–96. doi:10.1093/mp/ssq049.
  • Osuna, D., B. Usadel, R. Morcuende, Y. Gibon, O. E. Bläsing, M. Höhne, M. Günter, B. Kamlage, R. Trethewey, W.-R. Scheible, et al. 2007. Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. The Plant Journal 49 (3):463–91. doi:10.1111/j.1365-313X.2006.02979.x.
  • Panchal, P., Preece, C., Peñuelas, J. and Giri, J. 2022. Soil carbon sequestration by root exudates. Trends in Plant Science, doi:10.1016/j.tplants.2022.04.009.
  • Pei, J., H. Li, S. Li, T. An, J. Farmer, S. Fu, and J. Wang. 2015. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level. PLoS One 10 (3):e0120825. doi:10.1371/journal.pone.0120825.
  • Pellet, D. M., D. L. Grunes, and L. V. Kochian. 1995. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196 (4):788–95. doi:10.1007/BF01106775.
  • Plaxton, W. C. 1996. The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology 47 (1):185–214. doi:10.1146/annurev.arplant.47.1.185.
  • Rademacher, T., R. E. Häusler, H.-J. Hirsch, L. Zhang, V. Lipka, D. Weier, F. Kreuzaler, and C. Peterhänsel. 2002. An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. The Plant Journal 32 (1):25–39. doi:10.1046/j.1365-313X.2002.01397.x.
  • Sami, F., and S. Hayat. 2019. Effect of glucose on the morpho-physiology, photosynthetic efficiency, antioxidant system, and carbohydrate metabolism in Brassica juncea. Protoplasma 256 (1):213–26. doi:10.1007/s00709-018-1291-4.
  • Sauvadet, M., G. Lashermes, G. Alavoine, S. Recous, M. Chauvat, P.-A. Maron, and I. Bertrand. 2018. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biology & Biochemistry 123:64–73. doi:10.1016/j.soilbio.2018.04.026.
  • Shahbaz, M., Y. Kuzyakov, and F. Heitkamp. 2017. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma 304:76–82. doi:10.1016/j.geoderma.2016.05.019.
  • Shahzad, T., F. Anwar, S. Hussain, F. Mahmood, M. S. Arif, A. Sahar, M. F. Nawaz, N. Perveen, M. Sanaullah, K. Rehman, et al. 2019. Carbon dynamics in surface and deep soil in response to increasing litter addition rates in an agro-ecosystem. Geoderma 333:1–9. doi:10.1016/j.geoderma.2018.07.018.
  • Su, Y., M. Yu, H. Xi, J. Lv, and Z. Ma. 2020. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Scientific Reports 10 (1):1–10. doi:10.1038/s41598-019-56847-4.
  • Trivedi, P., B. P. Singh, and B. K. Singh. 2018. Chapter 1 - Soil carbon: Introduction, importance, status, threat, and mitigation. In Soil carbon storage, ed. B. K. Singh, 1–28. Academic Press.
  • Vance, G. F., and M. B. David. 1992. Dissolved organic carbon and sulfate sorption by spodosol mineral horizons. Soil Science 154 (2):136–44. doi:10.1097/00010694-199208000-00007.
  • Wang, Q. F., Y. Zhao, Q. Yi, K. Z. Li, Y. X. Yu, and L. M. Chen. 2010. Overexpression of malate dehydrogenase in transgenic tobacco leaves: Enhanced malate synthesis and augmented Al-resistance. Acta Physiologiae Plantarum 32 (6):1209–20. doi:10.1007/s11738-010-0522-x.
  • Wang, L. H., Li, G. L., Wei, S., Li, L. J., Zuo, S. Y., Liu, X., Gu, W. R., and Li, J. 2018. Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica 57 (1):286–94. doi:10.32615/ps.2019.030.
  • Wu, J., R. G. Joergensen, B. Pommerening, R. Chaussod, and P. C. Brookes. 1990. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology & Biochemistry 22 (8):1167–69. doi:10.1016/0038-0717(90)90046-3.
  • Xu, X., T. An, J. Zhang, Z. Sun, S. Schaeffer, and J. Wang. 2019. Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil. Geoderma 337:622–29. doi:10.1016/j.geoderma.2018.08.018.
  • Xu, X., S. Schaeffer, Z. Sun, J. Zhang, T. An, and J. Wang. 2020. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil and Tillage Research 199:104593. doi:10.1016/j.still.2020.104593.
  • Zhou, J., Y. Wen, L. Shi, M. R. Marshall, Y. Kuzyakov, E. Blagodatskaya, and H. Zang. 2021. Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biology & Biochemistry 152:108069. doi:10.1016/j.soilbio.2020.108069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.