1,052
Views
14
CrossRef citations to date
0
Altmetric
Review

Phosphate Solubilizing Microorganisms: A Review

&
Pages 1306-1315 | Received 09 Jun 2022, Accepted 26 Oct 2022, Published online: 01 Nov 2022

References

  • Abdul Wahid, O. A., and T. A. Mehana. 2000. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiological Research 155 (3):221–27. doi:10.1016/s0944-5013(00)80036-1.
  • Ahmad, I., M. Ahmad, A. Hussain, and M. Jamil. 2021. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: A promising approach for improving cotton growth. Folia Microbiologica 66 (1):115–25. doi:10.1007/s12223-020-00831-3.
  • Alori, E. T., B. R. Glick, and O. O. Babalola. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontier Microbiology 8:971. doi:10.3389/fmicb.2017.00971.
  • Aye, P. P., P. Pinjai, and S. Tawornpruek. 2021. Effect of phosphorus solubilizing bacteria on soil available phosphorus and growth and yield of sugarcane. Walailak Journal of Science and Technology 18 (12):10754. doi:10.48048/wjst.2021.10754.
  • Azaroual, S., Z. Hazzoumi, N. Mernissi, A. Aasfar, I. Meftah Kadmiri, and B. Bouizgarne. 2020. Role of inorganic phosphate solubilizing bacilli isolated from Moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L) phosphorus uptake. Current Microbiology 77 (9):2391–404. doi:10.1007/s00284-020-02046-8.
  • Bononi, L., J. B. Chiaramonte, C. C. Pansa, M. A. Moitinho, and I. S. Melo. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports 10 (1):2858. doi:10.1038/s41598-020-59793-8.
  • Chen, Q., and S. Liu. 2019. Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology 10:2171. doi:10.3389/fmicb.2019.02171.
  • Chen, J., G. Zhao, Y. Wei, Y. Dong, L. Hou, and R. Jiao. 2021. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports 11 (1):9081. doi:10.1038/s41598-021-88635-4.
  • Deshwal, V. K., and P. Kumar. 2013. Plant growth promoting activity of Pseudomonads in rice crop. International Journal of Current Microbiology 2 (11):152–57.
  • Dey, R., K. Pal, D. Bhatt, and S. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research 159 (4):371–94. doi:10.1016/j.micres.2004.08.004.
  • Dey, P., R. Santhi, S. Maragatham, and K. M. Sellamuthu. 2017. Status of phosphorus and potassium in the Indian soils vis-à-vis world soils. Indian Journal of Fertilisers 13 (4):44–59.
  • Doilom, M., J. Guo, R. Phookamsak, P. Mortimer, S. Karunarathna, W. Dong, C. Liao, K. Yan, D. Pem, N. Suwannarach, et al. 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology 11:585215. doi:10.3389/fmicb.2020.585215.
  • Ekin, Z. 2010. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. African Journal of Biotechnology 9 (25):3794–800.
  • Elhaissoufi, W., S. Khourchi, A. Ibnyasser, C. Ghoulam, Z. Rchiad, Y. Zeroual, K. Lyamlouli, and A. Bargaz. 2020. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Frontiers in Plant Science 11:979. doi:10.3389/fpls.2020.00979.
  • Elias, F., D. Woyessa, and D. Muleta. 2016. Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma zone, Southwest Ethiopia. International Journal of Microbiology 1–11. doi:10.1155/2016/5472601.
  • Fitriatin, B. N., P. Suryatmana, A. Yuniarti, and N. Istifadah. 2017. The application of phosphate solubilizing microbes biofertilizer to increase soil P and yield of maize on Ultisols Jatinangor. 2nd International Conference on Sustainable Agriculture and Food Security: A Comprehensive Approach, KnE Life Sciences 179–84. doi: 10.18502/kls.v2i6.1037.
  • Garg, N., and R. Pandey. 2015. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Millsp.) genotypes. Mycorrhiza 25:165–80. doi:10.1007/s00572-014-0600-9.
  • Gupta, R., A. Kumari, S. Sharma, O. Alzahrani, A. Noureldeen, and H. Darwish. 2022. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences 29 (1):35–42. doi:10.1016/j.sjbs.2021.09.075.
  • Jacob, J., and D. W. 1993. Lawlor. Extreme phosphate deficiency decreases the in vivo CO2/O2 specificity factor of ribulose 1, 5-bisphosphate carboxylase-oxygenase in intact leaves of sunflower. Journal of Experimental Botany 44 (11):1635–41. doi:10.1093/jxb/44.11.1635.
  • Jain, R., J. Saxena, and V. Sharma. 2012. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiologica 57 (6):533–41. doi:10.1007/s12223-012-0167-9.
  • Jakobsen, I., C. Gazey, and L. K. Abbott. 2001. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. The New Phytologist 149:95–103. doi:10.1046/j.1469-8137.2001.00006.x.
  • Jiang, F., L. Zhang, J. Zhou, T. S. George, and G. Feng. 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. The New Phytologist 230 (1):304–15. doi:10.1111/nph.17081.
  • Jyoti, S., B. Paramita, J. Vanaja, and C. Shalini. 2013. Phosphate solubilization by a few fungal strains belonging to the genera Aspergillus and Penicillium. African Journal of Microbiology Research 7 (41):4862–69. doi:10.5897/ajmr2013.5991.
  • Kalayu, G. 2019. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. International Journal of Agronomy 1–7. doi:10.1155/2019/4917256.
  • Kang, J., A. Amoozegar, D. Hesterberg, and D. Osmond. 2011. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma 161 (3–4):194–201. doi:10.1016/j.geoderma.2010.12.019.
  • Kaur, R., and S. Kaur. 2020. Variation in the phosphate solubilizing bacteria from virgin and the agricultural soils of Punjab. Current Microbiology 77 (9):2118–27. doi:10.1007/s00284-020-02080-6.
  • Khan, A. A., G. Jilani, M. S. Akhtar, S. M. S. Naqvi, and M. Rasheed. 2009. Phosphorus solubilizing bacteria occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Sciences 1:48–58.
  • Kumar, A., A. Kumar, and H. Patel. 2018. Role of microbes in phosphorus availability and acquisition by plants. International Journal of Current Microbiology and Applied Sciences 7 (05):1344–47. doi:10.20546/ijcmas.2018.705.161.
  • Lee, K. K., I. K. Mok, M. H. Yoon, H. J. Kim, and D. Y. Chung. 2012. Mechanisms of phosphate solubilization by PSB (phosphate-solubilizing bacteria) in soil. Korean Journal of Soil Science and Fertilizer: Korean Society of Soil Science and Fertilizer. doi:10.7745/kjssf.2012.45.2.169.
  • Li, X., L. Luo, J. Yang, B. Li, and H. Yuan. 2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger Strain An2. Applied Biochemistry and Biotechnology 175 (5):2755–68. doi:10.1007/s12010-014-1465-2.
  • Li, D. D., S. H. Shang, W. Han, N. N. Fang, and Y. L. Yi. 2019b. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus. Chinese Journal of Applied Ecology 30 (7):2384–92. PMID: 31418242. doi:10.13287/j.1001-9332.201907.033.
  • Li, Z., B. Tongshuo, D. Letian, W. Fuwei, T. Jinjin, M. Shiting, H. Yunxiao, W. Shimei, and H. Shuijin. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific Reports 6 (1):1–8. doi:10.1038/srep25313.
  • Liu, Z., Y. Li, S. Zhang, Y. Fu, X. Fan, J. Patel, and M. Zhang. 2015. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology 96:217–24. doi:10.1016/j.apsoil.2015.08.003.
  • Li, Y., J. Zhang, J. Zhang, W. Xu, and Z. Mou. 2019a. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. International Journal of Environmental Research and Public Health 16 (12):2141. doi:10.3390/ijerph16122141.
  • Lucero, C., G. Lorda, M. Anzuay, L. Ludueña, and T. Taurian. 2021. Peanut Endophytic phosphate solubilizing bacteria increase growth and P content of soybean and maize plants. Current Microbiology 78 (5):1961–72. doi:10.1007/s00284-021-02469-x.
  • Mishra, A., P. S. Chauhan, V. Chaudhry, M. Tripathi, and C. S. Nautiyal. 2011. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 100:405–13. doi:10.1007/s10482-011-9596-8.
  • Mogollón, J., A. Beusen, H. van Grinsven, H. Westhoek, and A. Bouwman. 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change 50:149–63. doi:10.1016/j.gloenvcha.2018.03.007.
  • Oteino, N., R. Lally, S. Kiwanuka, A. Lloyd, D. Ryan, K. Germaine, and D. Dowling. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6:745. doi:10.3389/fmicb.2015.00745.
  • Park, J., N. Bolan, M. Megharaj, and R. Naidu. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials 185 (2–3):829–36. doi:10.1016/j.jhazmat.2010.09.095.
  • Peix, A., P. Mateos, C. Rodriguez-Barrueco, E. Martinez-Molina, and E. Velazquez. 2001. Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology & Biochemistry 33 (14):1927–35. doi:10.1016/S0038-0717(01)00119-5.
  • Pepe, A., M. Giovannetti, and C. Sbrana. 2020. Appressoria and phosphorus fluxes in mycorrhizal plants: Connections between soil-and plant-based hyphae. Mycorrhiza 30:589–600. doi:10.1007/s00572-020-00972-w.
  • Qiao, H., X. R. Sun, X. Q. Wu, G. E. Li, Z. Wang, and D. W. Li. 2019. The phosphate-solubilizing ability of Penicillium guanacastense and its effects on the growth of Pinusmassoniana in phosphate-limiting conditions. Biology Open 8 (11):bio046797. doi:10.1242/bio.046797.
  • Raimi, A., A. Roopnarain, G. Chirima, and R. Adeleke. 2020. Insights into the microbial composition and potential efficiency of selected commercial biofertilisers. Heliyon 6 (7):e04342. doi:10.1016/j.heliyon.2020.e04342.
  • Ramesh, A., S. K. Sharma, N. Yadav, and O. P. Joshi. 2014. Phosphorus mobilization from native soil P-pool upon inoculation with phytate-mineralizing and phosphate-solubilizing Bacillus aryabhattai isolates for improved p-acquisition and growth of soybean and wheat crops in microcosm conditions. Agricultural Research 3:118–27. doi:10.1007/s40003-014-0105-y.
  • Rasul, M., S. Yasmin, M. Yahya, C. Breitkreuz, M. Tarkka, and T. Reitz. 2021. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research 246:126703. doi:10.1016/j.micres.2021.126703.
  • Richardson, A., and R. Simpson. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology 156 (3):989–96. doi:10.1104/pp.111.175448.
  • Santana, E., E. Marques and J. Dias. 2016. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth. Genetics and Molecular Research 15 (4):. doi:10.4238/gmr.15048729.
  • Sarikhani, M., B. Khoshru, and R. Greiner. 2019. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World Journal of Microbiology & Biotechnology 35 (8):126. doi:10.1007/s11274-019-2702-1.
  • Satyaprakash, M., T. Nikitha, E. U. B. Reddi, B. Sadhana and S. S. Vani. 2017. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences 6 (4):2133–44. doi:10.20546/ijcmas.2017.604.251.
  • Shankar, T., T. Sivakumar, G. Asha, S. Sankaralingam and V. Sundaram. 2013. Effect of PSB on Growth and Development of Chilli and Maize Plants. World Applied Sciences Journal 26:610–17. doi:10.5829/idosi.wasj.2013.26.05.1215.
  • Sharif, M. and N. Claassen. 2011. Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere 21:502–11. doi:10.1016/s1002-0160(11)60152-5.
  • Sharma, S. B., R. Z. Sayyed, M. H. Trivedi and T. A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. doi:10.1186/2193-1801-2-587.
  • Sial, N. A., S. A. Abro, M. Abbas, M. Irfan, and N. Depa. 2018. Growth and yield of wheat as affected by phosphate solubilizing bacteria and phosphate fertilizer. Pakistan Journal of Biotechnology 15:475–79.
  • Smith, S. E., I. Jakobsen, M. Gronlund, and F. A. Smith. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050–57. doi:10.1104/pp.111.174581.
  • Song, J., L. Min, J. Wu, Q. He, F. Chen, and Y. Wang. 2021. Response of the microbial community to phosphate-solubilizing bacterial inoculants on Ulmus chenmoui Cheng in Eastern China. PLoS One 16 (2):e0247309. doi:10.1371/journal.pone.0247309.
  • Tarafdar, J., M. Bareja, and J. Panwar. 2003. Efficiency of some phosphatase-producing soil fungi. Indian Journal of Microbiology 43 (1):27–32.
  • Tian, J., F. Ge, D. Zhang, S. Deng and X. Liu. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 10 (2):158. doi:10.3390/biology10020158.
  • Vance, C. P., U. Claudia and L. A. Deborah. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a non renewable resource. The New Phytologist 157 (3):423–47. doi:10.1046/j.1469-8137.2003.00695.x.
  • Walpola, B. C. and M.-H. Yoon. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Researchh 6 (37):6600–05. doi:10.5897/AJMR12.889.
  • Wang, Y., S. Peng, Q. Hua, C. Qiu, P. Wu, X. Liu, and X. Lin. 2021. The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology 12:693535. doi:10.3389/fmicb.2021.693535.
  • Wu, Y., Y. He, H. Yin, W. Chen, Z. Wang, L. Xu and A. Zhang. 2012. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates. Pakistan Journal of Biological Sciences 15 (23):1144–51. doi:10.3923/pjbs.2012.1144.1151.
  • Wu, F., J. Li, Y. Chen, L. Zhang, Y. Zhang, S. Wang, X. Shi, L. Li, and J. Liang. 2019. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of camellia oleifera abel. Forests 10 (4):348. doi:10.3390/f10040348.
  • Xiao, C., R. Chi, H. He, G. Qiu, D. Wang, and W. Zhang. 2009. Isolation of phosphate-solubilizing Fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159 (2):330–42. doi:10.1007/s12010-009-8590-3.
  • Xue, D., X. D. Huang, R. X. Yang, and Z. H. Wang. 2018. Screening and phosphate-solubilizing characteristics of phosphate-solubilizing actinomycetes in rhizosphere of tree peony. Chinese Journal of Applied Ecology 29 (5):1645–52. doi:10.13287/j.1001-9332.201805.035.
  • YaNez-Ocampo, G., M. E. Mora-Herrera, A. Wong-Villarreal, D. M. De La Paz-Osorio, N. De La Portilla-LÓpez, J. Lugo, R. Vaca-Paulín, and P. Del Aguila. 2020. Isolated phosphate-solubilizing soil bacteria promotes in vitro growth of Solanum tuberosum L. Polish Journal of Microbiology 69 (3):357–65. doi:10.33073/pjm-2020-039.
  • Yazdani, M., M. A. Bahmanyar, H. Pirdashti, and M. A. Esmaili. 2009. Effect of Phosphate Solubilization Microorganisms (PSM) and Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). International Journal of Agricultural and Biosystems Engineering 3 (1):50–52.
  • You, M., S. Fang, J. MacDonald, J. Xu, and Z. Yuan. 2020. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiological Research 233:126395. doi:10.1016/j.micres.2019.126395.
  • Zaidi, A., M. S. Khan, M. Ahemad, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica Et Immunologica Hungarica 56 (3):263–84. doi:10.1556/AMicr.56.2009.3.6.
  • Zhang, Y., F. Chen, X. Wu, F. Luan, L. Zhang, X. Fang, S. Wan, X. Hu, J. Ye, and D. Cullen. 2018b. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS One 13 (7):e0199625. doi:10.1371/journal.pone.0199625.
  • Zhang, J., Q. Xiao, and P. Wang. 2021. Phosphate solubilizing bacterium Burkholderia sp. strain N3 facilitates the regulation of gene expression and improves tomato seedling growth under cadmium stress. Ecotoxicology and Environmental Safety 217:112268. doi:10.1016/j.ecoenv.2021.112268.
  • Zhang, W., C. Xiu-Xiu, L. Yu-Min, L. Dun-Yi, D. Yun-Fei, C. Xin-Ping and Z. Chun-Qin. 2018a. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Research 219:113–19. doi:10.1016/j.fcr.2018.01.031.
  • Zhu, F., L. Qu, X. Hong and X. Sun. 2011. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneriasp. YCWA18 from Daqiao Saltern on the coast of Yellow sea of China. Evidence-Based Complementary and Alternative Medicine 1–6. doi:10.1155/2011/615032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.