296
Views
20
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Sugarcane Bagasse Biochar on Maize Growth Factors in Lead and Cadmium-Polluted Soils

ORCID Icon
Pages 1426-1446 | Received 26 Apr 2022, Accepted 07 Nov 2022, Published online: 15 Nov 2022

References

  • Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M. F., Abbas, F., Hannan, F., Rinklebe, J., and Ok, Y. S. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety 140:37–47. doi:10.1016/j.ecoenv.2017.02.028.
  • Adriano, D. C. 1986. Trace elements in the terrestrial environment. New York: Springer.
  • Ahmad, M., Ok, Y. S., Kim, B. Y., Ahn, J. H., Lee, Y. H., Zhang, M., Moon, D. H., Al-Wabel, M. I., and Lee, S. S. 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and as mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of environmental management 166:131–39. doi:10.1016/j.jenvman.2015.10.006.
  • Ali, J., S. Khan, A. Khan, M. Waqas, and M. J. Nasir. 2020. Contamination of soil with potentially toxic metals and their bioaccumulation in wheat and associated health risk. Environmental Monitoring and Assessment 192:138. doi:10.1007/s10661-020-8096-6.
  • Ali, B., X. Xu, R. A. Gill, S. Yang, S. Ali, M. Tahir, and W. Zhou. 2014. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Industrial Crops and Products 52:617–26. doi:10.1016/j.indcrop.2013.11.033.
  • Allen, S. E., H. M. Grinshaw, J. A. Parkinson, and C. Qjuarmby. 1974. Chemical methods for analyzing ecological materials. Vol. 565 London: Oxford Blackwell Scientific Publications.
  • Alloway, B.J. 1990. Heavy metal in soils. New York, NY: John Wiley and Sons.
  • Al-Wabel, M. I., A. R. A. Usman, A. H. El-Naggar, A. A. Aly, H. M. Ibrahim, S. Elmaghraby, and A. Al-Omran. 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences 22:503–11. doi:10.1016/j.sjbs.2014.12.003.
  • Antoniadis, V., E. Levizou, S. M. Shaheen, Y. S. Ok, A. Sebastian, C. Baum, J. Rinklebe, W. W. Wenzel, and J. Rinklebe. 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews 171:621–45. doi:10.1016/j.earscirev.2017.06.005.
  • APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DC.
  • Awad, M., M. A. El-Desoky, A. Ghallab, J. Kubes, S. E. Abdel-Mawly, S. Danish, D. Ratnasekera, M. Sohidul Islam, M. Skalicky, M. Brestic, et al. 2021. Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 26:3360. doi:10.3390/molecules26113360.
  • Azeem, M., R. Hayat, Q. Hussain, M.I. Tahir, M. Imran, Z. Abbas, S. Sajid, A. Latif, and M. Irfan. 2019. Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil and Tillage Research 186:172–82. doi:10.1016/j.still.2018.10.007.
  • Bashir, S., Q. Hussain, M. Akmal, M. Riaz, H. Hu, S. S. Ijaz, M. Ahmad, S. Abro, S. Mehmood, and M. Ahmad. 2018. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soils and Sediments 18 (3):874–86. doi:10.1007/s11368-017-1796-z.
  • Basta, N. T., R. Gradwohl, K. L. Snethen, and J. L. Schroder. 2001. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality 30:1222–30. doi:10.2134/jeq2001.3041222x.
  • Břendová, K., P. Tlustoš, and J. Száková. 2015. Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil. Plant, soil and environment 61 (7):303–08. doi:10.17221/181/2015-PSE.
  • Brigden, K., R. Stringer, and D. Santillo. 2002. Heavy metal and radionuclide contamination of fertilizer products and phosphogypsum waste produced by the Lebanese chemical company. Exeter EX4 4PS, UK: Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter.
  • Carter, S., S. Shackley, S. Sohi, T. B. Suy, and S. Haefele. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy 3:404–18. doi:10.3390/agronomy3020404.
  • Chaney, R. L., P. G. Reeves, J. A. Ryan, R. W. Simmons, R. M. Welch, and J. S. Angle. 2004. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549–53. doi:10.1023/B:BIOM.0000045737.85738.cf.
  • Chen, W., J. Meng, X. Han, Y. Lan, and W. Zhang. 2019. Past, present, and future of biochar. Biochar 1 (1):75–87. doi:10.1007/s42773-019-00008-3.
  • Clemens, S. 2006. Evolution and function of phytochelatin synthases. Journal of Plant Physiology 163 (3):319–32. doi:10.1016/j.jplph.2005.11.010.
  • Cui, L., Noerpel, M. R., Scheckel, K. G., and Ippolito, J. A. 2019. Wheat straw biochar reduces environmental cadmium bioavailability. Environment International 126: 69–75.
  • Ding, W., X. Dong, I.M. Ime, B. Gao, and L.Q. Ma. 2014. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74. doi:10.1016/j.chemosphere.2013.12.042.
  • FAO/WHO. 1984. List contaminats and their maxium leves in foods. Codex Alimentarius commission. Accessed November 10, 2012. http://www.codexalimentarius.org
  • Fellet, G., L. Marchiol, V. G. Delle, and A. Peressotti. 2011. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere 83 (9):1262–67. doi:10.1016/j.chemosphere.2011.03.053.
  • Francesca, F., C. S. Maria, M. Valeria, A. Carmen, M. Giulia, G. Simonetta, C. Fiore, and S. Valeria. 2019. Overall plant responses to Cd and Pb metal stress in maize: Growth pattern, ultrastructure, and photosynthetic activity. Environmental Science and Pollution Research 26:1781–90. doi:10.1007/s11356-018-3743-y.
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In Methods of soil analysis, part 1. Physical and mineralogical methods, A. Klute ed., 2nd ed., 383–411. Madison, WI: ASA, SSSA.
  • Groppa, M. D., M. L. Tomaro, and M. P. Benarides. 2007. Polyamines and heavy metal stress: The antioxidant behavior of spermine in Cadmium and Copper treated wheat leaves. Biometals 20:185–95. doi:10.1007/s10534-006-9026-y.
  • Gupta, P. K. 2000. Soil, plant, water and fertilizer analysis. India: Agrobios.
  • Huang, M. L., S. L. Zhou, B. Sun, and Q. G. Zhao. 2008. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. The Science of the Total Environment 405:54–61. doi:10.1016/j.scitotenv.2008.07.004.
  • Jalalipur, J. 2014. The Biochar Effect on Yield of Sunflower (Helianthus annuus L.) and Cadmium Bioavailability in Soil. Thesis Submitted in Partial Fulfillment of the Requirement for the degree of Master of Science (M. Sc) in Soil Science, Graduate School Faculty of Water and Soil Department of Soil Science. University of Zabol.
  • Jeffery, S., T. M. Bezemer, G. Cornelissen, T. W. Kuyper, J. Lehmann, L. Mommer, S. P. Sohi, T. F. J. van de Voorde, D. A. Wardle, and J. W. van Groenigen. 2015. The way forward in biochar research: Targeting trade-offs between the potential wins. GCB Bioenergy 7:1–13. doi:10.1111/gcbb.12132.
  • Jiang, J., R. K. Xu, T. Y. Jiang, and Z. Li. 2012. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials 229:145–50. doi:10.1016/j.jhazmat.2012.05.086.
  • Kabata-Pendias, A. 2000. Trace elements in soils and plants. Londan: CRC Press.
  • Karimi, R., M. Chorom, and S. Mahmod. 2011. Oil-contaminated soils to assess the potential of lead. cadmium andnickel by Joe and Colza.First National Conference on strategies to achieve agricultural Paydar, Payame Noor University. Khuzestan province
  • Kharea, P., U. Dilshada, P. K. Routb, V. Yadava, and S. Jaina. 2013. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry 10: S3054–S3063. doi:10.1016/j.arabjc.2013.11.047.
  • Kushwaha, A., Hans, N., Kumar, S., and Rani, R. 2018. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety 147: 1035–1045.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: Science and technology. London and Sterling,VA USA: Earthscan.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Liu, Q., Y. Zhang, B. Liu, J. E. Amonette, Z. Lin, G. Liu, Z. Xie, and Z. Xie. 2018. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil 426:211–25. doi:10.1007/s11104-018-3619-4.
  • Martin, J. A. R., M. L. Arias, and J. M. G. Corbi. 2006. Heavy metals contents in agricultural topsoils in theEbro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution 144:1001–12. doi:10.1016/j.envpol.2006.01.045.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science 7 (9):405–10. doi:10.1016/S1360-1385(02)02312-9.
  • Mohamed, E. S., A.A.El-Hosary, G. Y. Hammam, M. E. El Saeed and A. A. El-Hosary. 2019. Maize hyprids yield potential as affected by plant population denstity in Qalyubia, Egypt, Bioscience Research. 16 (2): 1565–1576.
  • Moradi-Choghamarani, F., A.A. Moosavi, and M. Baghernejad. 2019. Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. Journal of Thermal Analysis and Calorimetry 138:331–42. doi:10.1007/s10973-019-08186-9.
  • Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research 48:638–47.
  • Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. In Methods of soil analysis, ed. A. L. Page, et al., 539–79. Madison, WI: ASA, SSSA.
  • Nguyen, T. T. N., C. Xu, I. Tahmasbian, R. Che, Z. Xu, X. Zhou, S. H. Bai, and S. H. Bai. 2017. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 288:79–96. doi:10.1016/j.geoderma.2016.11.004.
  • Nie, C., X. Yang, N.K. Niazi, X. Xu, Y. Wen, J. Rinklebe, Y.S. Ok, S. Xu, and H. Wang. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 200:274–82.
  • Park, J. H., G. K. Choppala, N. S. Bolan, J. W. Chaung, and T. Chuasavathi. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil 348:439–51. doi:10.1007/s11104-011-0948-y.
  • Parkpian, P., S. T. Leong, P. Laortanakul, and N. Thunthaisong. 2003. Regional monitoring of lead and cadmium contamination in a tropical graz-ing land site, Thailand. Environmental Monitoring and Assessment 85 (2):157–73. doi:10.1023/A:1023638012736.
  • Rajkovich, R., R. Akioenders, K. Hanley, C. Hyland, A. R. Zimmerman, and J. Lehmann. 2011. Corn growth and nitrogen nutrition after additions. Biology and Fertility of Soils 48 (3):271–84. doi:10.1007/s00374-011-0624-7.
  • Ramazani, M., and S. Ghasemi. 2011.Study of phytoremediation lead by maize (Zea mays L.). First National Conference on phytoremediation, Tehran. February
  • Rassaei, F. 2021. Effect of different acidic phosphorus agents on the cadmium chemical fractions in calcareous soil. Arabian Journal of Geosciences 14 (21):1–8. doi:10.1007/s12517-021-08594-y.
  • Rassaei, F. 2022a. Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils. Soil Science Annual 73 (2):152586. doi:10.37501/soilsa/152586.
  • Rassaei, F. 2022b. Methane emissions and rice yield in a paddy soil: The effect of biochar and polystyrene microplastics interaction. Paddy and Water Environment. doi:10.1007/s10333-022-00915-5.
  • Rassaei, F., M. Hoodaji, and S. A. Abtahi. 2019a. Zinc and incubation time effect on cadmium chemical fractions in two types of calcareous soil. Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 63 (4):337–349. http://digital.casalini.it/10.12871/00021857201943
  • Rassaei, F., M. Hoodaji, and S. Abtahi. 2019b. Cadmium chemical forms in two calcareous soils treated with different levels of incubation time and moisture regimes. Journal of Environmental Protection 10:500–13. doi:10.4236/jep.2019.104029.
  • Rassaei, F., M. Hoodaji, and S.A. Abtahi. 2020a. Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy and Water Environment 18:595–606. doi:10.1007/s10333-020-00804-9.
  • Rassaei, F., M. Hoodaji, and S.A. Abtahi. 2020b. Cadmium speciation as influenced by soil water content and zinc and the studies of kinetic modeling in two soils textural classes. International Soil and Water Conservation Research 8 (3):286–94. doi:10.1016/j.iswcr.2020.05.003.
  • Rassaei, F., M. Hoodaji, and S. A. Abtahi. 2020c. Cadmium fractions in two calcareous soils affected by incubation time, zinc and moisture regime. Communications in Soil Science and Plant Analysis 51 (4):456–67. doi:10.1080/00103624.2020.1718685.
  • Rassaei, F., M. Hoodaji, and S.A. Abtahi. 2020d. Fractionation and mobility of cadmium and zinc in calcareous soils of Fars Province, Iran. Arabian Journal of Geosciences 13:1097. doi:10.1007/s12517-020-06123-x.
  • Rees, F., M. O. Simonnot, and J. L. Morel. 2014. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science 65:149–61. doi:10.1111/ejss.12107.
  • Richards, L. A. 1969. Diagnosis and improvement of saline and alkali soils, 160. Washington: United States Salinity Laboratory. USDA. Agriculture Handbook, 60.
  • Sarker, T.C., A. SMGG, A.M.A. El-Gawad, S.A. Gaglione, and G. Bonanomi. 2017. Sugarcane bagasse: A potential low-cost biosorbent for the removal of hazardous materials. Clean Technologies and Environmental Policy 19:2343–62. doi:10.1007/s10098-017-1429-7.
  • Sharma, P., and R. S. Duby. 2005. Toxicity in plants. Brazil Journal Plant Physiology 17 (1):35–52. doi:10.1590/S1677-04202005000100004.
  • Singh, A., R. K. Sharma, M. Agrawal, and F. M. Marshall. 2010. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology 48:611–19. doi:10.1016/j.fct.2009.11.041.
  • Sohi, S., E. Lopez-Capel, E. Krull, and R. Bol. 2009. Biochar’s role in soil and climate change: A review of research needs. CSIRO Land and Water Science Report 59:1–57.
  • Song, W., and M. Guo. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94:138–45. doi:10.1016/j.jaap.2011.11.018.
  • Tangahu, B. V., S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, and M. Mukhlisin. 2011.A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011: 1–31.doi: 10.1155/2011/939161
  • Vega, F. A., M. L. Andrade, and E. F. Covelo. 2010. Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. Journal of Hazardous Materials 174 (1–3):522–33. doi:10.1016/j.jhazmat.2009.09.083.
  • Violante, A., V. Cozzolino, L. Perelomov, A. G. Caporale, and M. Pigna. 2010. Mobility and bio-availability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition 10. doi:10.4067/S0718-95162010000100005.
  • Wińska-Krysiak, M., S. Gawroński, M. Wińska-Krysiak, and K. Koropacka. 2015. Determination of the tolerance of sunflower to lead-induced stress. Journal of Elementology. doi:10.5601/jelem.2014.19.4.721.
  • Wu, Z., F. Wang, S. Liu, Y. Du, F. Li, R. Du, D. Wen, and J. Zhao. 2016. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environmental and Experimental Botany 131:173–80. doi:10.1016/j.envexpbot.2016.07.012.
  • Xuan, B., J. Wang, Z. B. Duan, K. Wang, and J. P. An. 2017. Review on contamination and remediation technology of heavy metal in agricultural soil. Advances in Environmental Protection 7 (1):26–34. doi:10.12677/AEP.2017.71004.
  • Xu, P., C. X. Sun, X. Z. Ye, W. D. Xiao, Q. Zhang, and Q. Wang. 2016. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety 132:94–100. doi:10.1016/j.ecoenv.2016.05.031.
  • Yaghoobzadeh, F. 2011. Phytoremediation Cadmuiem by maize (Zea mays L.). Master’s thesis, Islamic Azad University of Saveh.
  • Yang, X., K. Lu, K. McGrouther, L. Che, G. Hu, Q. Wang, X. Liu, L. Shen, H. Huang, Z. Ye, et al. 2017. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments 17:751–62. doi:10.1007/s11368-015-1326-9.
  • Yu, X. Y., G. G. Ying, and R. S. Kookana. 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–71. doi:10.1016/j.chemosphere.2009.04.001.
  • Zafar-Ul-Hye, M., M. Naeem, S. Danish, M. J. Khan, S. Fahad, R. Datta, M. Brtnicky, A. Kintl, G. S. Hussain, and M. A. El-Esawi. 2020. Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants 9:1356. doi:10.3390/plants9101386.
  • Zeng, L., X. Lin, F. Zhou, J. Qin, and H. Li. 2019. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicology and Environmental Safety 167:520–30. doi:10.1016/j.ecoenv.2018.10.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.