141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phosphate, Lime and Bentonite Affect Heavy Metals and Phosphorus Availability in Acidic and Calcareous Soils

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1755-1766 | Received 30 Jun 2022, Accepted 27 Mar 2023, Published online: 10 May 2023

References

  • Azeez, M. O., J. T. Christensen, S. Ravnskov, G. J. Heckrath, R. Labouriau, B. T. Christensen, and G. H. Rubæk. 2020. Phosphorus in an arable coarse sandy soil profile after 74 years with different lime and P fertilizer applications. Geoderma 376:114555. doi:10.1016/j.geoderma.2020.114555.
  • Bao, S. 2016. Analysis of Soil and Agro-chemicals. Beijing, China: China Agricultural Press.
  • Barrow, N. J. 2017. The effects of pH on phosphate uptake from the soil. Plant and Soil 410 (1–2):401–10. doi:10.1007/s11104-016-3008-9.
  • Bouraie, E. M., and A. A. Masoud. 2017. Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg(OH)2. Applied Clay Science 140:157–64. doi:10.1016/j.clay.2017.01.021.
  • Bouray, M., J. L. Moir, L. M. Condron, and D. Paramashivam. 2022. Early effects of surface liming on soil P biochemistry and dynamics in extensive grassland. Nutrient Cycling in Agroecosystems 124 (2):173–87. doi:10.1007/s10705-021-10163-4.
  • Cao, X., L. Q. Ma, D. R. Rhue, and C. S. Appel. 2004. Mechanisms of lead,copper,and zinc retention by phosphate rock. Environmental Pollution 131 (3):435–44. doi:10.1016/j.envpol.2004.03.003.
  • Chen, S., and Y. Zhu. 2004. Effects of different phosphorus-compounds on Pb uptake by Brassica Oleracea. Acta Scientiae Circumstantiae 24:707–12.
  • Chen, S., Y. Zhu, and Y. Ma. 2006. Effects of phosphate amendments on Pb extractability and movement of phosphorus in contaminated soil. Acta Scientiae Circumstantiae 26:1140–44.
  • Chrysochoou, M., D. Dermatas, and D. G. Grubb. 2007. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate. Journal of Hazardous Materials 144 (1–2):1–14. doi:10.1016/j.jhazmat.2007.02.008.
  • Cui, L., M. Noerpel, K. G. Scheckel, Ippolito, J.A., et al. 2019. Wheat straw biochar reduces environmental cadmium bioavailability. Environment International 126:69–75. doi:10.1016/j.envint.2019.02.022.
  • Curtin, D., and J. K. Syers. 2001. Lime-induced changes in indices of soil phosphate availability. Soil Science Society of America Journal 65 (1):147–52. doi:10.2136/sssaj2001.651147x.
  • Dimirkou, A., A. Loannou, and M. Doula. 2002. Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite–hematite systems. Advances in Colloid and Interface Science 97 (1–3):37–61. doi:10.1016/S0001-8686(01)00046-X.
  • Dong, H., S. Tang, S. Ye, Zhao, M., Li, H., Wang, G., et al. 2016. Effect of lime on the transfer of Cd and Pb in the soil-rice cultivation system and their accumulation in the rice grains. Journal of Safety and Environment 16:226–31.
  • Edzwald, J. K., D. C. Toensing, and M.C. -Y. Leung. 1976. Phosphate adsorption reactions with clay minerals. Environmental Science & Technology 19 (5):485–90. doi:10.1021/es60116a001.
  • Eslamian, F., Z. Qi, and C. Cheng Qian. 2021. Lime amendments to enhance soil phosphorus adsorption capacity and to reduce phosphate desorption. Water, Air, & Soil Pollution 232 (2):66. doi:10.1007/s11270-021-05024-3.
  • Fageria, N. K., Z. He, and V. C. Baligar. 2017. Phosphorus management in crop production. 1st ed. Boca Raton, FL, USA: CRC Press.
  • Garau, G., P. Castaldi, L. Santona, P. Deiana, and P. Melis. 2007. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142 (1–2):47–57. doi:10.1016/j.geoderma.2007.07.011.
  • Guo, X., W. Han, G. Zhang, Y. Yang, Z. Wei, Q. He, and Q. Wu. 2020. Effect of inorganic and organic amendments on maize biomass, heavy metals uptake and their availability in calcareous and acidic washed soil. Environmental Technology & Innovation 19:101038. doi:10.1016/j.eti.2020.101038.
  • Hamidpour, M., M. Kalbasi, M. Afyuni, H. Shariatmadari, P. E. Holm, and H. C. B. Hansen. 2010. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. Journal of Hazardous Materials 181 (1–3):686–91. doi:10.1016/j.jhazmat.2010.05.067.
  • Hamid, Y., L. Tang, B. Hussain, M. Usman, H. K. Gurajala, M. S. Rashid, Z. He, and X. Yang. 2020. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environmental Pollution 257:113609. doi:10.1016/j.envpol.2019.113609.
  • Hashimoto, Y., M. Takaoka, and K. Shiota. 2011. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: An X-ray absorption fine structure spectroscopy investigation. Journal of Environmental Quality 40 (3):696–703. doi:10.2134/jeq2010.0057.
  • Hussain, L. A., Z. Zhang, Z. Guo, A. Mahar, R. Li, M. Kumar Awasthi, T. Ali Sial, F. Kumbhar, P. Wang, F. Shen, et al. 2017. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety 145:313–23. doi:10.1016/j.ecoenv.2017.07.049.
  • Ippolito, J. A., D. L. Bjorneberg, S. W. Blecker, and M. S. Massey. 2019. Mechanisms responsible for soil phosphorus availability differences between sprinkler and furrow irrigation. Journal of Environmental Quality 48 (5):1–10. doi:10.2134/jeq2019.01.0016.
  • Kabata-Pendias, A., and H. Pendias. 2001. Trace elements in soils and plants. 3rd ed. Boca Raton, Florida. USA: CRC Press.
  • Karapinar, N., and R. Donat. 2009. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249 (1):123–29. doi:10.1016/j.desal.2008.12.046.
  • Kastury, F., E. Smith, E. Doelsch, E. Lombi, M. Donnelley, P. L. Cmielewski, D. W. Parsons, K. G. Scheckel, D. Paterson, M. D. de Jonge, et al. 2019. In vitro, in vivo, and spectroscopic assessment of lead exposure reduction via ingestion and inhalation pathways using phosphate and iron amendments. Environmental Science & Technology. 53(17):10329–41. doi:10.1021/acs.est.9b02448.
  • Kirkham, M. B. 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137 (1–2):19–32. doi:10.1016/j.geoderma.2006.08.024.
  • Li, J., Y. Li, and Q. Meng. 2010. Removal of nitrate by zero-valent iron and pillared bentonite. Journal of Hazardous Materials 174 (1–3):188–93. doi:10.1016/j.jhazmat.2009.09.035.
  • Lindsay, W. L. 1979. Chemical equilibria in soils. New York, New York: John Wiley and Sons, Inc.
  • Li, L., K. G. Scheckel, L. Zheng, G. Liu, W. Xing, and G. Xiang. 2014. Immobilization of lead in soil influenced by soluble phosphate and calcium: Lead speciation evidence. Journal of Environmental Quality 43 (2):468–74. doi:10.2134/jeq2013.07.0272.
  • Li, L., W. Xing, G. Xiang, Yang, L., Zhang, H., Zhang, J., et al. 2012. Immobilization of Pb and Cd in a lead smelting polluted soil with different amendments. Acta Scientiae Circumstantiae 32:1717–24.
  • Lizarralde, C. A., R. W. McDowell, L. M. Condron, and J. Brown. 2021. Amending soils of different pH to decrease phosphorus losses. Soil Research 60 (2):114–23. doi:10.1071/SR21012.
  • Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu, and H. Yang. 2020. Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environmental Pollution 257:113641. doi:10.1016/j.envpol.2019.113641.
  • Lu, R. 2000. Methods of Soil and Agro-Chemical Analysis. Beijing, China: China Agricultural Science and Technology Press.
  • Ma, G., N. Tu, C. Fang, Yi, Z., Yang, J., Tan, Z., Li, P., Dong, Y., et al. 2020. Effects of combined application of organic and inorganic fertilizers with zinc fertilizer and lime on yield and soil nutrient characteristics of double cropping rice. Journal of Soil and Water Conservation 34:171–77.
  • McDowell, R. W., N. Mahieu, P. C. Brookes, and P. R. Poulton. 2003. Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere 51 (8):685–92. doi:10.1016/S0045-6535(03)00107-3.
  • Melamed, R., X. Cao, M. Chen, and L. MA. 2003. Field assessment of lead immobilization in a contaminated soil after phosphate application. The Science of the Total Environment 305 (1–3):117–27. doi:10.1016/S0048-9697(02)00469-2.
  • Mi, J., E. G. Gregorich, S. Xu, N. B. McLaughlin, B. Ma, and J. Liu. 2021. Changes in soil biochemical properties following application of bentonite as a soil amendment. European Journal of Soil Biology 102:103251. doi:10.1016/j.ejsobi.2020.103251.
  • Ministry of Ecology and Environment, State Administration of Market Regulation. 2018. Soil environmental quality-Risk control standard for soil contamination of agricultural land (GB15618-2018).
  • Miretzky, P., and A. Fernandez-Cirelli. 2008. Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters 6 (3):121–33. doi:10.1007/s10311-007-0133-y.
  • Mühlbachová, G., T. Šimon, and M. Pechová. 2005. The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant, Soil and Environment 51 (1):26–33. doi:10.17221/3552-PSE.
  • Novak, J. M., J. A. Ippolito, T. F. Ducey, D. W. Watts, K. A. Spokas, K. M. Trippe, G. C. Sigua, and M. G. Johnson. 2018. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere 205:709–18. doi:10.1016/j.chemosphere.2018.04.107.
  • Penn, C. J., and J. J. Camberato. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9 (6):120. doi:10.3390/agriculture9060120.
  • Qin, G., Z. Niu, J. Yu, Z. Li, J. Ma, and P. Xiang. 2021. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 267:129205. doi:10.1016/j.chemosphere.2020.129205.
  • Seshadri, B., N. S. Bolan, G. Choppala, A. Kunhikrishnan, P. Sanderson, H. Wang, L. D. Currie, D. C. W. Tsang, Y. S. Ok, and G. Kim. 2017. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 184:197–206. doi:10.1016/j.chemosphere.2017.05.172.
  • Setia, R., S. S. Dhaliwal, R. Singh, V. Kumar, S. Taneja, S. S. Kukal, and B. Pateriya. 2021. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263:128321. doi:10.1016/j.chemosphere.2020.128321.
  • Simonsson, M., A. Östlund, L. Renfjäll, C. Sigtryggsson, G. Börjesson, and T. Kätterer. 2018. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 315:208–19. doi:10.1016/j.geoderma.2017.11.019.
  • Sun, Y., G. Sun, Y. Xu, Liu, W., Liang, X., Wang, L., et al. 2016. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. Journal of Environmental Management 166:204–10.
  • Tahervand, S., and M. Jalali. 2017. Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH. Journal of Geochemical Exploration 181:148–59. doi:10.1016/j.gexplo.2017.07.005.
  • Tunesi, S., V. Poggi, and C. Gessa. 1999. Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems 53 (3):219–27. doi:10.1023/A:1009709005147.
  • Vrînceanu, N. O., D. M. Motelică, M. Dumitru, Calciu, I., Tanase, V., Preda, M., et al. 2019. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena 176:336–40.
  • Xie, Y., K. Xiao, Y. Sun, Gao., Y., Yang, H., Xu, H., et al. 2018. Effects of amendments on heavy metal immobilization and uptake by Rhizoma chuanxiong on copper and cadmium contaminated soil. Royal Society Open Science 5:181138.
  • Xing, W., E. Cao, K. G. Scheckel, Bai, X., Li, L., et al. 2018. Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead-smelter near Jiyuan, China. Environmental Science and Pollution Research 25:31396–406.
  • Xing, W., Y. Wang, K. G. Scheckel, Li, L., Xiang, G., Gong, D., Shi, L., et al. 2013. Effect of anions on the immobilization of heavy metals in a polluted soil with soluble phosphate. Acta Scientiae Circumstantiae 33:2814–20.
  • Xing, W., H. Yang, J. A. Ippolito, Zhao, Q., Zhang, Y., Scheckel, K.G., Li, L., et al. 2020. Atmospheric deposition of As, Cd, Cu, Pb and Zn near an operating and an abandoned lead smelter. Journal of Environmental Quality 49:1667–78.
  • Xing, W., C. Zhang, D. Zhou, Zhao, Q., Li, L., et al. 2019. Immobilization of heavy metals in a lead-smelting contaminated calcareous soil by phosphate, lime or bentonite. Chinese Journal of Soil Science 50:1245–52.
  • Xu, D., J. Xu, J. Wu, Muhammad, A., et al. 2006. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere 63:344–52.
  • Yang, Q., Z. Li, X. Lu, Duan, Q., Huang, L., Bi, J., et al. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. The Science of the Total Environment 642:690–700.
  • Yan, D., Z. Guo, F. Huang, Ran, H., Zhang, L., et al. 2020. Effect of calcium magnesium phosphate on remediation paddy soil contaminated with cadmium using lime and sepiolite. Environmental Science 41:1491–97.
  • Zhao, K., X. Liu, J. Xu, Selim, H.M., et al. 2010. Heavy metal contaminations in a soil-rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials 181:778–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.