59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spectral Study of Soil Silt and Detection of Key Wavelengths Using Diffuse Reflectance Spectroscopy in Mazandaran Province, Iran

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1969-1988 | Received 01 Jun 2022, Accepted 17 Apr 2023, Published online: 20 May 2023

References

  • Bahrami, A., M. Danesh, and M. Bahrami. 2022. Studying sand component of soil texture using the spectroscopic method. Infrared Physics & Technology 122:104056. doi:10.1016/j.infrared.2022.104056.
  • Bellon-Maurel, V., E. Fernandez-Ahumada, B. Palagos, J. M. Roger, and A. McBratney. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAc Trends in Analytical Chemistry 29 (9):1073–81. doi:10.1016/j.trac.2010.05.006.
  • Ben-Dor, E., D. Heller, and A. Chudnovsky. 2008. A novel method of classifying soil profiles in the field using optical means. Soil Science Society of America Journal 72 (4):1113–23. doi:10.2136/sssaj2006.0059.
  • Bilgili, A. V., H. M. Van Es, F. Akbas, A. Durak, and W. D. Hively. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments 74 (2010):229–38. doi:10.1016/j.jaridenv.2009.08.011.
  • Camargo, O. A., A. C. Moniz, J. A. Jorge, and J. M. A. S. Valadares. 1986. Methods of chemical, physical and mineralogical analysis of soils from the Agronomic Institute of Campinas, 94. Campinas: IAC, Technical Bulletin. (In Portuguese).
  • Cambule, A. H., D. G. Rossiter, J. J. Stoorvogel, and E. M. A. Smaling. 2012. Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique. Geoderma (2012):183–84. doi:10.1016/j.geoderma.2012.03.011.
  • Chang, C. W., and D. A. Laird. 2002. Near-infrared reflectance spectroscopy analysis of soil C and N. Soil Science 167 (2):110–16. doi:10.1097/00010694-200202000-00003.
  • Curcio, D., G. Ciraolo, F. D’Asaro, and M. Minacapilli. 2013. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences 19 (2013):494–503. doi:10.1016/j.proenv.2013.06.056.
  • Danesh, M., and H. A. Bahrami. 2022. Modeling of soil sand particles using spectroscopy technology. Communications in Soil Science & Plant Analysis 53 (17):2216–28. doi:10.1080/00103624.2022.2070638.
  • Danesh, M., H. A. Bahrami, R. Darvishzadeh, and A. A. Noroozi. 2016. Investigating clay contents using laboratory diffuse reflectance spectroscopy. Iranian Journal of RS&Gis 8 (1):71–94. in Persian.
  • Danesh, M., F. Taghipour, S. M. Emadi, and M. Ghajar Sepanlou. 2022. The interpolation methods and neural network to estimate the spatial variability of soil organic matter affected by land use type. Geocarto International. 37 (26):11306–15. doi:10.1080/10106049.2022.2048905.
  • Demattê, J. A. M., and F. S. Terra. 2014. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations. Geoderma 217-218 (2014):217–18. doi:10.1016/j.geoderma.2013.11.012.
  • Emadi, M., R. Taghizadeh-Mehrjardi, A. Cherati, M. Danesh, A. Mosavi, and T. Scholten. 2020. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing 12 (14):2234. doi:10.3390/rs12142234.
  • Gholamalifard, M., S. Joorabian Shooshtari, S. H. Hosseini Kahnuj, and M. Mirzaei. 2013. Land cover change modeling of coastal areas of Mazandaran province using LCM in a GIS environment. JES 38 (4):109–24. 10.22059/jes.2013.29867.
  • Gomez, C., Y. Le Bissonnais, M. Annabi, H. Bahri, and D. Raclot. 2013. Laboratory Vis–NIR spectroscopy as an alternative method for estimating the soil aggregate stability indexes of Mediterranean soils. Geoderma (2013):209–10. doi:10.1016/j.geoderma.2013.06.002.
  • Guo, L., H. Zhang, T. Shi, Y. Chen, Q. Jiang, and M. Linderman. 2019. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma 337:32–41. doi:10.1016/j.geoderma.2018.09.003.
  • Jong, S. M. D., E. A. Addink, L. P. H. Van Beek, and D. Duijsings. 2011. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. Catena 86 (2011):24–35. doi:10.1016/j.catena.2011.01.018.
  • Kagan, T. P., M. Shachak, E. Zaady, and A. Karnieli. 2014. A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma (2014):230–31. doi:10.1016/j.geoderma.2014.04.003.
  • Matney, T., L. R. Barrett, M. B. Dawadi, D. Maki, C. Maxton, D. S. Perry, D. C. Roper, L. Somers, and L. G. Whitman. 2014. In situ shallow subsurface reflectance spectroscopy of archaeological soils and features: A case-study of two Native American settlement sites in Kansas. Journal of Archaeological Science 43 (2014):315–24. doi:10.1016/j.jas.2013.11.027.
  • Mc Dowell, M. L., G. L. Bruland, J. L. Deenik, S. Grunwald, and N. M. Knox. 2012. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma (2012):189–90. doi:10.1016/j.geoderma.2012.06.009.
  • Ostovari, Y., S. Ghorbani-Dashtaki, H. A. Bahrami, M. Abbasi, J. A. M. Dematte, E. Arthur, and P. Panagos. 2018. Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma 314:102–12. doi:10.1016/j.geoderma.2017.11.014.
  • Padarian, J., B. Minasny, and A. B. McBratney. 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional 16:e00198. doi:10.1016/j.geodrs.2018.e00198.
  • Peng, L., H. Cheng, L. J. Wang, D. Zhu, and M. A. Naeth. 2020. Comparisons of the prediction results of soil properties based on fuzzy c -means clustering and expert knowledge from laboratory Visible – Near-Infrared reflectance spectroscopy data. Canadian Journal of Soil Science 101 (1):33–44. doi:10.1139/cjss-2020-0025.
  • Pietrzykowski, M., and M. Chodak. 2014. Near infrared spectroscopy-A tool for chemical properties and organic matter assessment of afforested mine soils. Ecological Engineering 62 (2014):115–22. doi:10.1016/j.ecoleng.2013.10.025.
  • Qi, F., R. Zhang, X. Liu, Y. Niu, H. Zhang, H. Li, J. Li, B. Wang, and G. Zhang. 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research 184:45–51. doi:10.1016/j.still.2018.06.011.
  • Rawlins, B. G., S. J. Kemp, and A. E. Milodowski. 2011. Relationships between particle size distribution and VNIR reflectance spectra are weaker for soils formed from bedrock compared to transported parent materials. Geoderma 166 (2011):84–91. doi:10.1016/j.geoderma.2011.07.015.
  • Sadaty, S. A., and N. Nazari. 2021. Impact of land use change on the effectiveness of traditional arable land systems and environmental in Miandorood, Mazandaran, Iran. Environmental Challenges 4:100165. doi:10.1016/j.envc.2021.100165.
  • Small, C., M. Steckler, L. Seeber, S. H. Akhter, S. Goodbred Jr., B. Mia, and B. Imam. 2009. Spectroscopy of sediments in the Ganges–Brahmaputra delta: Spectral effects of moisture, grain size and lithology. Remote Sensing of Environment 113 (2009):342–61. doi:10.1016/j.rse.2008.10.009.
  • Stenberg, B., R. A. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107:163–215.
  • Vašát, R., R. Kodešová, L. Borůvka, A. Klement, O. Jakšík, and A. Gholizadeh. 2014. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS. Geoderma 232-234 (2014):232–34. doi:10.1016/j.geoderma.2014.05.012.
  • Xu, D., W. Ma, S. Chen, Q. Jiang, K. He, and Z. Shi. 2018. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Computers and Electronics in Agriculture 144:1–8. doi:10.1016/j.compag.2017.11.029.
  • Zhao, L., H. Hong, Q. Fang, T. J. Algeo, C. Wang, M. Li, and K. Yin. 2020. Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting Quaternary soil deposits. Catena 184:104239. doi:10.1016/j.catena.2019.104239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.