153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

‘MrudaTest’: An Android Phone Intervened Platform for Soil Primary Nutrients and pH Detection

ORCID Icon, , , &
Pages 2014-2030 | Received 17 Nov 2021, Accepted 17 Apr 2023, Published online: 11 May 2023

References

  • Adamchuk, V. I., J. W. Hummel, M. T. Morgan, and S. K. Upadyaya. 2004. On-the-go sensors for precision agriculture. Computers and Electronics in Agriculture 44 (1):71–91. doi:10.1016/j.compag.2004.03.002.
  • Agritech. 2014. Resource management: soil sampling procedure https://agritech.tnau.ac.in/agriculture/agri_soil_sampling.html
  • Ali, S. S., B. B. Waghwani, S. Anjankar, J. Kalambe, S. Balpande, P. Mondal, P. Tiwari, and V. Rathee. 2021. Microfluidic based analyzer for water dissolved arsenic (AsIII) detection. Water, Air, & Soil Pollution 232 (12):507. doi:10.1007/s11270-021-05449-w.
  • Balpande, S. S., M. L. Bhaiyya, and R. S. Pande. 2017. Low-cost fabrication of polymer substrate-based piezoelectric microgenerator with PPE, IDE and ME. Electronics Letters 53 (5):341–43. doi:10.1049/el.2016.4099.
  • Balpande, S. S., J. P. Kalambe, and R. S. Pande. 2019. Development of strain energy harvester as an alternative power source for the wearable biomedical diagnostic system. Micro & Nano Letters 14 (7):777–81. doi:10.1049/mnl.2018.5250.
  • Balpande, S., and S. Pande. 2022. Comparative evaluation of fabric yarn, polymers, and seed crust dielectrics for triboelectric energy harvesters. Journal of Electronic Materials 51 (8):4270–80. doi:10.1007/s11664-022-09676-7.
  • Balpande, S. S., R. S. Pande, and R. M. Patrikar. 2016. Design and low cost fabrication of green vibration energy harvester. Sensors and Actuators A, Physical 251:134–41. doi:10.1016/j.sna.2016.10.012.
  • Balpande, S. S., R. S. Pande, and R. M. Patrikar. 2021. Grains level evaluation and performance enhancement for piezoelectric energy harvester. Ferroelectrics. 572 (1):71–93. 1868874. doi:10.1080/00150193.2020.1868874.
  • Bishnoi, S. W., C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas. 2006. All-optical nanoscale pH meter. Nano Letters 6 (8):1687–92. doi:10.1021/nl060865w.
  • Chauhan, A., and S. Balpande. 2021. A smartphone-mediated system for soil organic carbon detection. International Journal of Next-Generation Computing - 12 (5). Special Issue.
  • Deep green permaculture. 2020. Soil Chemistry Fundamentals, Part 1– Understanding Soil pH and How it Affects Plant Nutrient Availabilityhttps://deepgreenpermaculture.com/2020/05/26/soil-chemistry-fundamentals-part-1-understanding-soil-ph-and-how-it-affects-plant-nutrient-availability/.
  • Dhone, M. D., P. G. Gawatre, and S. S. Balpande. 2018. Frequency band widening technique for cantilever-based vibration energy harvesters through dynamics of fluid motion. Materials Science for Energy Technologies 1 (1):84–90. doi:10.1016/j.mset.2018.06.002.
  • Dindorkar, G., V. Rathee, and S. Balpande. 2019. Detection of mercury in water using filter paper based channel and colorimetric-android, readout. International Journal of Engineering and Advanced Technology 2249–8958. doi:10.35940/ijeat.B3089.129219.
  • Dudala, S., K. Dubey, and S. Goel. 2020. Microfluidic soil nutrient detection system: Integrating nitrite, pH, and electrical conductivity detection. IEEE Sensors Journal 20 (8):4504–11. doi:10.1109/JSEN.2020.2964174.
  • The Fertilizer Institute. 2014. Fertilizer 101: The Big 3 - nitrogen, phosphorus and potassium, https://rb.gy/pcdjld
  • Fraser, N. 2013. Blockly: A visual programming editor, https://developers.google.com/blockly/.
  • Golicz, K., S. Hallett, R. Sakrabani, and M. Aitkenhead. 2021. Novel procedure for testing soil field test kits involving paper strips. Soil Use and Management 37 (3):607–17. doi:10.1111/sum.12582.
  • Golicz, K., S. H. Hallett, R. Sakrabani, and G. Pan. 2019. The potential for using smartphones as portable soil nutrient analyzers on suburban farms in central East China. Scientific Reports 9 (1):16424. doi:10.1038/s41598-019-52702-8.
  • Hossen, M. A., P. K. Diwakar, and S. Ragi. 2021. Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Scientific Reports 11 (1):12693. doi:10.1038/s41598-021-90624-6.
  • Kumar Singh, J. 2022. IIT Kanpur launches a soil-testing device that can detect soil health in only 90 seconds. http://www.iitk.ac.in/new/soil-testing-device.
  • Lamar Burton, K. J., S. Bhansali, and S. Bhansali. 2020. Review—the “real-time” revolution for in situ soil nutrient sensing. Journal of the Electrochemical Society 167 (3):037569. doi:10.1149/1945-7111/ab6f5d.
  • Mashud, M. A. A., M. A. Masud, and M. S. Islam. 2011. Design and development of microcontroller based digital pH meter. ULAB Journal of Science and Engineering 2: 31–34.
  • MIT (Massachusetts Institute of Technology). 2021. Personal Image Classifier http://23.tweb.appinventor.mit.edu/explore/resources/ai/personal-image-classifier.
  • Nardozzi, C. 2021. How to test your soil–dummies. dummies. http://www.dummies.com/homegarden/gardening/howto-test-your-soil/
  • Orlabindia. 2022. Digital-soil-testing-kit http://www.orlabindia.com/digital-soil-testing-kit/#.
  • Patton, E. W., M. Tissenbaum, and F. Harunani. 2019. MIT app inventor: objectives, design, and development. In Computational Thinking Education, S. Kong and H. Abelson. ed., Singapore: Springer. doi:10.1007/978-981-13-6528-7_3.
  • PlastiSurge Industries Pvt. Ltd. 2021: https://www.psidispo.com/soil-test-kit
  • Rathee, V., and S. Balpande. 2022. Development of machine learning-based system for mercury (Hg) detection. Neuro Quantology 20 (9):2119–24. doi:10.14704/nq.2022.20.9.NQ44246.
  • Rathi, S., P. Ashtankar, V. Mehta, S. Anjankar, V. Rathee, and S. Balpande. 2022. TRIBO-SIM: A parametric simulation tool for triboelectric energy generators. International Journal of Ambient Energy 43 (1):7077–87. doi:10.1080/01430750.2022.2059002.
  • Ravansari, R., S. C. Wilson, and M. Tighe. 2020. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environment International 134 (2020):105250. doi:10.1016/j.envint.2019.105250.
  • Singh, S. A., and S. S. Balpande. 2022. Development of IoT-Based condition monitoring system for bridges. Sound&vibration 56 (3):209–20. doi:10.32604/sv.2022.014518.
  • Soum, V., S. Park, A. I. Brilian, O. S. Kwon, and K. Shin. 2019. Programmable paper-based microfluidic devices for biomarker detections. Micromachines (Basel) 10 (8):516. doi:10.3390/mi10080516.
  • Waghwani, B. B., S. S. Ali, S. C. Anjankar, S. S. Balpande, P. Mondal, and J. P. Kalambe. 2020. In vitro detection of water contaminants using microfluidic chip and luminescence sensing platform. Microfluidics and Nanofluidics 24 (9):73. doi:10.1007/s10404-020-02381-z.
  • Yetisen, A. K., J. L. Martinez-Hurtado, A. Garcia-Melendrez, F. Da Cruz Vasconcellos, and C. R. Lowe. 2014. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors and Actuators B, Chemical 196:156–60. doi:10.1016/j.snb.2014.01.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.