48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in Soil Zinc Fractions Upon Inoculation of Zinc Solubilizing Bacteria (ZnSB) Under Rice Rhizospheric Soil

, ORCID Icon, , , &
Pages 2322-2338 | Received 28 Nov 2023, Accepted 08 May 2024, Published online: 21 May 2024

References

  • Abaid-Ullah, M., M. Nadeem, M. Hassan, J. Ganter, B. Muhammad, and K. Nawaz. 2015. Plant growth promoting rhizobacteria: An alternate way to improve yield and quality of wheat (Triticum aestivum). International Journal of Agriculture & Biology 17:51–60.
  • Ahmed, A. M. A., G. Ahmed, M. H. Magda, and M. M. TawfikIntegrated. 2011. Effect of organic and biofertilizers on wheat productivity in new reclaimed soils. Research Journal of Biological Science 7:105–14.
  • Ali, M., I. Ahmed, H. Tariq, S. Abbas, M. H. Zia, A. Mumtaz, and M. Sharif. 2023. Growth improvement of wheat (Triticum aestivum) and zinc biofortification using potent zinc solubilizing bacteria. Frontiers in Plant Science 14:1140454. doi:10.3389/fpls.2023.1140454
  • Alloway Brian, H. A., M. A. Muhammad, Z. A. Zahir, and Muhammad M. A. 2008. Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pakistan Journal of Agricultural Sciences 52 (4):915–22.
  • Balk, K. P., and P. A. Helmke. 2019. The chemistry of zinc. In Zinc in soil and plants, ed. A. Robson, 1–13. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • Banafsheh, R., E. Naeimeh, and N. M. Mojtaba. 2022. Changes in Soil Zinc Chemical Fractions and improvements in wheat grain quality in response to Zinc solubilizing bacteria. Communications in Soil Science & Plant Analysis 53 (5):622–35. doi:10.1080/00103624.2021.2017962
  • Bharti, K. P., A. K. Pradhan, M. Singh, K. Beura, S. K. Behera, and S. C. Paul. 2018. Effect of mycorrhizal co-inoculation with selected rhizobacteria on soil zinc dynamics. International Journal of Current Microbiology and Applied Sciences 7 (10):1961–70. doi:10.20546/ijcmas.2018.710.226
  • Bhatt, K., and D. K. Maheshwari. 2020. Zinc solubilizing bacteria (bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in capsicum annuum L. 3 Biotech 10 (2):36. doi:10.1007/s13205-019-2033-9
  • Burman, U., M. Saini, and P. Kumar. 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95:605–12.
  • Chandel, G., S. Banerjee, S. See, R. Meena, D. J. Sharma, and S. B. Verulkar. 2010. Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Science 17:213–27.
  • Chen, Y., J. Shi, X. Tian, Z. Jia, S. Wang, J. Chen, and W. Zhu. 2019. Impact of dissolved organic matter on Zn extractability and transfer in calcareous soil with maize straw amendment. Journal of Soils & Sediments 19 (2):774–84. doi:10.1007/s11368-018-2060-x
  • Dinesh, R., V. Srinivasan, S. Hamza, C. Sarathambal, S. A. Gowda, and A. Ganeshamurthy. 2018. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil zn release rates, soil available Zn and plant zn content. Geoderma 321:173–86. doi:10.1016/j.geoderma.2018.02.013
  • Gadd, G. M. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology 11 (3):271–79. doi:10.1016/S0958-1669(00)00095-1
  • Gandhi, A., and G. Muralidharan. 2016. Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. European Journal of Soil Biology 76:1–8.
  • Garg, R. D., R. M. Welch, and H. E. Bouis. 2008. Addressing micronutrients malnutrition through enhancing the nutritional quality of staple foods principles, perspectives and knowledge gaps. Advanced Agronomy 70:77–142.
  • Guo, C. H., A. Q. Zhao, X. H. Tian, H. Y. Li, and S. Li. 2015. Effects of Zn sources and application methods on the contents of various Zn fractions and Zn fertilizer utilization efficiency. Journal of Plant Nutrition and Fertilizers 21:1225–33.
  • Hina, J., M. J. Akhtar, H. N. Asghar, and J. Amer. 2018. Screening of zinc solubilizing bacteria and their potential to increase grain concentration in wheat (Triticum aestivum). International Journal of Agriculture & Biology 20 (3):547–53. doi:10.17957/ijab/15.0514
  • Huang, S., N. Yamaji, J. Feng Ma, and N. Verbruggen. 2022. Zinc transport in rice: How to balance optimal plant requirements and human nutrition. Journal of Experimental Botany 73 (6):1800–08. doi:10.1093/jxb/erab478
  • IBM (2020). SPSS statistics for windows (version 20.0). Inc. Armonk, NY, United States. IBM Corporation, United States.
  • Jalal, A., E. F. Junior, and M. C. M. Teixeira Filho. 2024. Interaction of zinc mineral nutrition and plant growth-promoting bacteria in tropical agricultural systems: A review. Plants 13 (5):571. doi:10.3390/plants13050571
  • Kumar, S. P., A. S. Geetha, P. Savithri, R. Jagadeeswaran, and K. P. Ragunath. 2017. Effect of Zn enriched organic manures and zinc solubilizer application on the yield, curcumin content and nutrient status of soil under turmeric cultivation. Journal of Applied Horticulture 6 (2):82–86.
  • Kumar, A., B. R. Maurya, and R. Raghuwanshi. 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis & Agricultural Biotechnology 3 (4):121–28. doi:10.1016/j.bcab.2014.08.003
  • Masood, F., S. Ahmad, and A. Malik. 2022. Role of rhizobacterial bacilli in zinc solubilization, in microbial biofertilizers and micronutrient availability, 361–77. (Aligarh, India: Aligarh Muslim University) (Springer). doi:10.1007/978-3-030-76609-2_15
  • Mumtaz, M. Z., M. Ahmad, M. Jamil, and T. Hussain. 2017. Zinc solubilizing bacillus spp. potential candidates for biofortification in maize. Microbiological Research 202:51–60. doi:10.1016/j.micres.2017.06.001
  • Natasha, N., M. Shahid, I. Bibi, J. Iqbal, S. Khalid, B. Murtaza, H. F. Bakhat, A. B. U. Farooq, M. Amjad, and H. M. Hammad. 2022. Zinc in soil-plant-human system: A data-analysis review. Science of the Total Environment 808:152024. doi:10.1016/j.scitotenv.2021.152024
  • Naveed, M., B. Mitter, S. Yousaf, M. Pastar, M. Afzal, and A. Sessitsch. 2014. The endophyte Enterobacter sp. FD17: A maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biology and Fertility of Soils 50 (2):249–62. doi:10.1007/s00374-013-0854-y
  • Niko, B. R., and M. N. Masir. 2021. Changes in soil zinc chemical fractions and improvements in wheat grain quality in response to zinc solubilising bacteria. Science of the Total Environment 379 (2007):226–34.
  • Norvel, J. E. 1978. The top 10 hot topics in aging. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences 59 (1):M24–33. doi:10.1093/gerona/59.1.M24
  • Ofori, K. F., S. Antoniello, M. M. English, and A. N. Aryee. 2022. Improving nutrition through biofortification—A systematic review. Frontiers in Nutrition 9:1043655. doi:10.3389/fnut.2022.1043655
  • Patnaik, H. F., A. Ashraf, S. Muzammil, M. H. Siddique, and T. Ali. 2011. Assessment of zinc solubilization potential of zinc-resistant Pseudomonas oleovorans strain ZSB13 isolated from contaminated soil. Brazilian Journal of Biology 83.
  • Rana, A., M. Joshi, R. Prasanna, Y. S. Shivay, and L. Nain. 2012. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology 50:118–26. doi:10.1016/j.ejsobi.2012.01.005
  • Rehman, A., M. Farooq, M. Naveed, A. Nawaz, and B. Shahzad. 2018. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. The European Journal of Agronomy 94:98–107. doi:10.1016/j.eja.2018.01.017
  • Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science & Plant Nutrition 15 (2):397–409. doi:10.4067/S0718-95162015005000036
  • Rezaeiniko, B., N. Enayatizamir, and M. Norouzi Masir. 2019. The effect of zinc solubilizing bacteria on zinc uptake and some properties of wheat in the greenhouse. Journal of Water and Soil Science English Abstract 22 (4):249–60. doi:10.29252/jstnar.22.4.249
  • Senthil, K. C. M., T. K. Jacob, S. Devasahayam, T. Stephy, and C. Geethu. 2018. Multifarious plant growth promotion by an entomopathogenic fungus lecanicillium psalliotae. Microbiol Research 207 (153): 160.
  • Shukla, A. K., S. K. Behera, and C. Prakash. 2021. Deficiency of phyto-available sulphur, zinc, boron, iron, copper and manganese in soils of India. Scientific Reports 11:19760. doi:10.1038/s41598-021-99040-2
  • Subramanian, K. S., V. Tenshia, K. Jayalakshmi, and V. Ramachandran. 2009. Role of arbuscular mycorrhizal fungus (Glomus intraradices) (fungus aided). Agricultural Biotechnology and Sustainable Development 1:29–38.
  • Takkar, D. D., V. D. Jolley, C. W. Robbins, and R. E. Terry. 1989. Mycorrhizal colonization and nutrient uptake of dry bean in manure and composted manure treated subsoil and untreated topsoil and subsoil. Journal of Plant Nutrition 21 (9):1867–78. doi:10.1080/01904169809365529
  • Tariq, M., S. Hameed, K. A. Malik, and F. Y. Hafeez. 2007. Plant root associated bacteria for zinc mobilization in rice. Pakistan Journal of Botany 39:245–53.
  • Ullah, A., M. Farooq, and M. Hussain. 2020. Improving the productivity, profitability and grain quality of kabuli chickpea with co-application of zinc and endophyte bacteria Enterobacter sp. MN17. Archives of Agronomy and Soil Science 66 (7):897–912. doi:10.1080/03650340.2019.1644501
  • Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255 (2):571–86. doi:10.1023/A:1026037216893
  • Wang, Y., X. Yang, X. Zhang, L. Dong, J. Zhang, Y. Wei, Y. Feng, and L. Lu. 2014. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. Journal of Agricultural and Food Chemistry 62 (8):1783–91. doi:10.1021/jf404152u
  • Whiting, S. N., M. D. Souza, and N. Terry. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by thlaspi caerulescens. Environmental Science and Technology 35 (15):3144–50. doi:10.1021/es001938v
  • Yasmin, H., S. Naeem, M. Bakhtawar, Z. Jabeen, A. Nosheen, R. Naz, R. Keyani, S. Mumtaz, M. N. Hassan, and S. Penna. 2020. Halotolerant rhizobacteria pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLOS 15 (4):e0231348. doi:10.1371/journal.pone.0231348
  • Zeng, Y., H. Zhang, L. Wang, X. Pu, J. Du, S. Yang, and J. Liu. 2010. Genotypic variation in element concentrations in brown rice from Yunnan landraces in China. Environmetal Geochemistry and Heal 32:165–77.
  • Zhao, Y. Q., Y. X. Sun, Y. L. Ye, M. R. Karim, Y. F. Xue, P. Yan, Q. F. Meng, Z. L. Cu, I. Cakmak, F. S. Zhang, et al. 2014. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research 125:1–7. doi:10.1016/j.fcr.2011.08.003
  • Zia, M. H., I. Ahmed, E. H. Bailey, R. M. Lark, S. D. Young, N. M. Lowe, E. J. M. Joy, L. Wilson, M. Zaman, and M. R. Broadley. 2020. Site-specific factors influence the field performance of a zn-biofortified wheat variety. Frontiers in Sustainable Food Systems 4. doi:10.3389/fsufs.2020.00135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.