77
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The Importance of Soil Microorganisms in Regulating Soil Health

ORCID Icon, , , , , & ORCID Icon show all
Pages 2636-2650 | Received 11 Jul 2022, Accepted 30 May 2024, Published online: 18 Jun 2024

References

  • Adedayo, A. A., O. O. Babalola, C. Prigent-Combaret, C. Cruz, M. Stefan, F. Kutu, and B. R. Glick. 2022. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: A review. PeerJ 10:e13405. doi:10.7717/peerj.13405.
  • Adedayo, A. A., A. E. Fadiji, and O. O. Babalola. 2022a. The effects of plant health status on the community structure and metabolic pathways of rhizosphere microbial communities associated with Solanum lycopersicum. Horticulturae 8 (5):404. doi:10.3390/horticulturae8050404.
  • Adedayo, A. A., A. E. Fadiji, and O. O. Babalola. 2022b. Plant health status affects the functional diversity of the rhizosphere microbiome associated with Solanum lycopersicum. Frontiers in Sustainable Food Systems 6. doi:10.3389/fsufs.2022.894312.
  • Adeleke, B. S., and O. O. Babalola. 2021. Biotechnological overview of agriculturally important endophytic fungi. Horticulture, Environment and Biotechnology 62 (4):507–20. doi:10.1007/s13580-021-00334-1.
  • Alori, E. T., A. O. Adekiya, and K. A. Adegbite. 2020. Impact of agricultural practices on soil health. In Soil health, ed. B. Giri and A. Varma, 89–98. Cham: Springer International Publishing.
  • Alori, E. T., and O. O. Babalola. 2018. Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology 9:2213. doi:10.3389/fmicb.2018.02213.
  • Alori, E. T., M. O. Dare, and O. O. Babalola. 2017. Microbial inoculants for soil quality and plant health. In Sustainable agriculture reviews, ed. E. Lichtfouse, 281–308. Cham: Springer International Publishing.
  • Alori, E. T., O. C. Emmanuel, B. R. Glick, and O. O. Babalola. 2020. Plant–archaea relationships: A potential means to improve crop production in arid and semi-arid regions. World Journal of Microbiology and Biotechnology 36 (9):133. doi:10.1007/s11274-020-02910-6.
  • Alori, E. T., and O. B. Fawole. 2017. Microbial inoculants-assisted phytoremediation for sustainable soil management. In Phytoremediation: Management of environmental contaminants, volume 5, ed. A. A. Ansari, S. S. Gill, R. Gill, G. Lanza, and L. Newman, 1–18. Cham: Springer International Publishing.
  • Amoo, A. E., M. Delgado-Baquerizo, and O. O. Babalola. 2021. Forest plantations reduce soil functioning in terrestrial ecosystems from South Africa. Pedobiologia 89:150757. doi:10.1016/j.pedobi.2021.150757.
  • Aponte, H., P. Mondaca, C. Santander, S. Meier, J. Paolini, B. Butler, C. Rojas, M. C. Diez, and P. Cornejo. 2021. Enzyme activities and microbial functional diversity in metal(loid) contaminated soils near to a copper smelter. Science of the Total Environment 779:146423. doi:10.1016/j.scitotenv.2021.146423.
  • Arruda, B., W. F. B. Herrera, J. C. Rojas-García, C. Turner, and P. S. Pavinato. 2021. Cover crop species and mycorrhizal colonization on soil phosphorus dynamics. Rhizosphere 19:100396. doi:10.1016/j.rhisph.2021.100396.
  • Ayangbenro, A. S., and O. O. Babalola. 2018. Metal(loid) bioremediation: Strategies employed by microbial polymers. Sustainability 10 (9):3028. doi:10.3390/su10093028.
  • Ayangbenro, A. S., and O. O. Babalola. 2021. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology 25:100173. doi:10.1016/j.cpb.2020.100173.
  • Baude, M., B. C. Meyer, and M. Schindewolf. 2019. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of the Total Environment 659:1526–36. doi:10.1016/j.scitotenv.2018.12.455.
  • Begum, N., C. Qin, M. A. Ahanger, S. Raza, M. I. Khan, M. Ashraf, N. Ahmed, and L. Zhang. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10. doi:10.3389/fpls.2019.01068.
  • Bender, S. F., and M. G. A. van der Heijden. 2021. Soil organisms for healthy soil and sustainable agriculture. RURAL 21. https://www.rural21.com/english/a-closer-look-at/detail/article/soil-organisms-for-healthy-soil-and-sustainable-agriculture.html.
  • Bertola, M., A. Ferrarini, and G. Visioli. 2021. Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omics approaches: A perspective for the environment, food quality and human safety. Microorganisms 9 (7):1400. doi:10.3390/microorganisms9071400.
  • Bharti, R., and D. G. Grimm. 2021. Current challenges and best-practice protocols for microbiome analysis. Briefings in Bioinformatics 22 (1):178–93. doi:10.1093/bib/bbz155.
  • Bhattacharyya, S. S., F. F. G. D. Leite, C. L. France, A. O. Adekoya, G. H. Ros, W. De Vries, E. M. Melchor-Martínez, H. M. N. Iqbal, and R. Parra-Saldívar. 2022. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Science of the Total Environment 826:154161. doi:10.1016/j.scitotenv.2022.154161.
  • Brevik, E. C., L. Slaughter, B. R. Singh, J. J. Steffan, D. Collier, P. Barnhart, and P. Pereira. 2020. Soil and human health: Current status and future needs. Air, Soil and Water Research 13:1178622120934441. doi:10.1177/1178622120934441.
  • Chang, Y., L. Rossi, L. Zotarelli, B. Gao, M. A. Shahid, and A. Sarkhosh. 2021. Biochar improves soil physical characteristics and strengthens root architecture in muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture 8 (1):7. doi:10.1186/s40538-020-00204-5.
  • Choudhary, M., P. C. Sharma, H. S. Jat, A. Dash, B. Rajashekar, A. J. Mcdonald, and M. L. Jat. 2018. Soil bacterial diversity under conservation agriculture-based cereal systems in indo-Gangetic Plains. 3 Biotech 8 (7):304. doi:10.1007/s13205-018-1317-9.
  • Chukwuneme, C., A. Ayangbenro, and O. Babalola. 2021. Impacts of land-use and management histories of maize fields on the structure, composition, and metabolic potentials of microbial communities. Current Plant Biology 28:100228. doi:10.1016/j.cpb.2021.100228.
  • Coonan, E. C., C. A. Kirkby, J. A. Kirkegaard, M. R. Amidy, C. L. Strong, and A. E. Richardson. 2020. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems 117 (3):273–98. doi:10.1007/s10705-020-10076-8.
  • Coyne, D. L., L. Cortada, J. J. Dalzell, A. O. Claudius-Cole, S. Haukeland, N. Luambano, and H. Talwana. 2018. Plant-parasitic nematodes and food security in sub-Saharan Africa. Annual Review of Phytopathology 56 (1):381–403. doi:10.1146/annurev-phyto-080417-045833.
  • Daniel, A. J., E. Raimondo Enzo, M. Saez Juliana, B. Costa-Gutierrez Stefanie, A. Analía, S. Benimeli Claudia, and A. Polti Marta. 2022. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering 10:107141.
  • Daramola, F. Y., F. B. Lewu, and A. P. Malan. 2021. Diversity and population distribution of nematodes associated with honeybush (Cyclopia spp.) and rooibos (Aspalathus linearis) in the Western Cape province of South Africa. Heliyon 7 (2):e06306. doi:10.1016/j.heliyon.2021.e06306.
  • Delgado‐Baquerizo, M., P. Trivedi, C. Trivedi, D. Eldridge, P. Reich, T. Jeffries, B. Singh, and A. Bennett. 2017. Microbial richness and composition independently drive soil multifunctionality. Functional Ecology 31 (12):2330–43. doi:10.1111/1365-2435.12924.
  • De Mendonça, G. C., R. C. A. Costa, R. Parras, L. C. M. De Oliveira, M. T. V. N. Abdo, F. A. L. Pacheco, and T. C. T. Pissarra. 2022. Spatial indicator of priority areas for the implementation of agroforestry systems: An optimization strategy for agricultural landscapes restoration. Science of the Total Environment 839:156185. doi:10.1016/j.scitotenv.2022.156185.
  • Du Preez, G., M. Daneel, R. De Goede, M. J. Du Toit, H. Ferris, H. Fourie, S. Geisen, T. Kakouli-duarte, G. Korthals, S. Sánchez-moreno, et al. 2022. Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry 169:108640. doi:10.1016/j.soilbio.2022.108640.
  • Elemike, E. E., I. M. Uzoh, D. C. Onwudiwe, and O. O. Babalola. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9 (3):499. doi:10.3390/app9030499.
  • Enagbonma, B. J., and O. O. Babalola. 2019. Environmental sustainability: A review of termite mound soil material and its bacteria. Sustainability 11 (14):3847. doi:10.3390/su11143847.
  • Fiorentino, N., V. Ventorino, S. L. Woo, O. Pepe, A. De Rosa, L. Gioia, I. Romano, N. Lombardi, M. Napolitano, G. Colla, et al. 2018. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in Plant Science 9. doi:10.3389/fpls.2018.00743.
  • Garcia, M. O., P. H. Templer, P. O. Sorensen, R. Sanders-Demott, P. M. Groffman, and J. M. Bhatnagar. 2020. Soil microbes trade-off biogeochemical cycling for stress tolerance traits in response to year-round climate change. Frontiers in Microbiology 11. doi:10.3389/fmicb.2020.00616.
  • Gasch, C., and J. DeJong-Hughes. 2024. Soil organic matter does matter. In North Dakota State University, (NDSU) agriculture extension. https://www.ndsu.edu/agriculture/extension/publications/soil-organic-matter-does-matter.
  • Ge, J., D. Li, J. Ding, X. Xiao, and Y. Liang. 2023. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review. Environmental Research 222:115298. doi:10.1016/j.envres.2023.115298.
  • Giovannini, L., M. Palla, M. Agnolucci, L. Avio, C. Sbrana, A. Turrini, and M. Giovannetti. 2020. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 10 (1):106. doi:10.3390/agronomy10010106.
  • Gobler, C. J., S. Waugh, C. Asato, P. M. Clyde, S. C. Nyer, M. Graffam, B. Brownawell, A. K. Venkatesan, J. A. Goleski, R. E. Price, et al. 2021. Removing 80%–90% of nitrogen and organic contaminants with three distinct passive, lignocellulose-based on-site septic systems receiving municipal and residential wastewater. Ecological Engineering 161:106157. doi:10.1016/j.ecoleng.2021.106157.
  • Gougoulias, C., J. M. Clark, and L. J. Shaw. 2014. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food & Agriculture 94 (12):2362–71. doi:10.1002/jsfa.6577.
  • Hassan, D., A. Al-Bustany, and R. Mohammed. 2018. Effect of irrigation water salinity and tillage systems on some physical soil properties. Iraqi Journal of Agricultural Sciences 50 (Special):42–47. doi:10.36103/ijas.v50iSpecial.175.
  • Hassan, W., Y. E. Li, T. Saba, F. Jabbi, B. Wang, A. Cai, and J. Wu. 2022. Improved and sustainable agroecosystem, food security and environmental resilience through zero tillage with emphasis on soils of temperate and subtropical climate regions: A review. International Soil and Water Conservation Research 10 (3):530–45. doi:10.1016/j.iswcr.2022.01.005.
  • He, M., X. Xiong, L. Wang, D. Hou, N. S. Bolan, Y. S. Ok, J. Rinklebe, and D. C. W. Tsang. 2021. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials 414:125378. doi:10.1016/j.jhazmat.2021.125378.
  • He, L., H. Zhong, G. Liu, Z. Dai, P. C. Brookes, and J. Xu. 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution 252:846–55. doi:10.1016/j.envpol.2019.05.151.
  • Hu, P., J. Xiao, W. Zhang, L. Xiao, R. Yang, D. Xiao, J. Zhao, and K. Wang. 2020. Response of soil microbial communities to natural and managed vegetation restoration in a subtropical karst region. Catena 195:104849. doi:10.1016/j.catena.2020.104849.
  • Ingham, E. R., A. R. Moldenke, and C. A. Edwards. 2000. Soil biology primer.
  • Jacoby, R., M. Peukert, A. Succurro, A. Koprivova, and S. Kopriva. 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science 8. doi:10.3389/fpls.2017.01617.
  • Jahangir, M. M. R., S. Islam, T. T. Nitu, S. Uddin, A. K. M. A. Kabir, M. B. Meah, and R. Islam. 2021. Bio-compost-based integrated soil fertility management improves post-harvest soil structural and elemental quality in a two-year conservation agriculture practice. Agronomy 11 (11):2101. doi:10.3390/agronomy11112101.
  • Javed, Z., G. D. Tripathi, M. Mishra, and K. Dashora. 2021. Actinomycetes – the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatalysis and Agricultural Biotechnology 31:101893. doi:10.1016/j.bcab.2020.101893.
  • Jiao, S., Y. Xu, J. Zhang, X. Hao, Y. Lu, and A. Shade. 2019. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems 4 (2). doi:10.1128/mSystems.00313-18.
  • Karlen, D. L., K. S. Veum, K. A. Sudduth, J. F. Obrycki, and M. R. Nunes. 2019. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research 195:104365. doi:10.1016/j.still.2019.104365.
  • Khatoon, Z., S. Huang, M. Rafique, A. Fakhar, M. A. Kamran, and G. Santoyo. 2020. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management 273:111118. doi:10.1016/j.jenvman.2020.111118.
  • Krasilnikov, P., M. A. Taboada, and Amanullah. 2022. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 12 (4):462. doi:10.3390/agriculture12040462.
  • Laasli, S.-E., F. Mokrini, R. Lahlali, T. Wuletaw, T. Paulitz, and A. Dababat. 2022. Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in southern morocco and their contribution as soil health bioindicators. Diversity 14 (3):194. doi:10.3390/d14030194.
  • Lahlali, R., S. Ezrari, N. Radouane, J. Kenfaoui, Q. Esmaeel, H. El Hamss, Z. Belabess, and E. A. Barka. 2022. Biological control of plant pathogens: a global perspective. Microorganisms 10 (3):596. doi:10.3390/microorganisms10030596.
  • Liang, J., Y. Li, B. Si, Y. Wang, X. Chen, X. Wang, H. Chen, H. Wang, F. Zhang, Y. Bai, et al. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Science of the Total Environment 771:144802. doi:10.1016/j.scitotenv.2020.144802.
  • Li, Y., F. Fang, J. Wei, X. Wu, R. Cui, G. Li, F. Zheng, and D. Tan. 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports 9 (1):12014. doi:10.1038/s41598-019-48620-4.
  • Ma, L., D. Song, M. Liu, Y. Li, and Y. Li. 2022. Effects of earthworm activities on soil nutrients and microbial diversity under different tillage measures. Soil and Tillage Research 222:105441. doi:10.1016/j.still.2022.105441.
  • Melakeberhan, H., Z. Maung, I. Lartey, S. Yildiz, J. Gronseth, J. Qi, G. N. Karuku, J. W. Kimenju, C. Kwoseh, and T. Adjei-Gyapong. 2021. Nematode community-based soil food web analysis of ferralsol, lithosol and nitosol soil groups in Ghana. Kenya and Malawi Reveals Distinct Soil Health Degradations Diversity 13 (3):101. doi:10.3390/d13030101.
  • Mengual, C., A. Roldán, F. Caravaca, and M. Schoebitz. 2014. Advantages of inoculation with immobilized rhizobacteria versus amendment with olive-mill waste in the afforestation of a semiarid area with Pinus halepensis mill. Ecological Engineering 73:1–8. doi:10.1016/j.ecoleng.2014.09.007.
  • Meyer, M., D. Diehl, G. E. Schaumann, and K. Muñoz. 2021. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. Journal of Soils and Sediments 21 (12):3733–52. doi:10.1007/s11368-021-03037-3.
  • Morvan, X., L. Verbeke, S. Laratte, and A. R. Schneider. 2018. Impact of recent conversion to organic farming on physical properties and their consequences on runoff, erosion and crusting in a silty soil. Catena 165:398–407. doi:10.1016/j.catena.2018.02.024.
  • Muscolo, A., G. Settineri, and E. Attinà. 2015. Early warning indicators of changes in soil ecosystem functioning. Ecological Indicators 48:542–49. doi:10.1016/j.ecolind.2014.09.017.
  • Naylor, D., R. Mcclure, and J. Jansson. 2022. Trends in microbial community composition and function by soil depth. Microorganisms [Internet] 10 (3):540. doi:10.3390/microorganisms10030540.
  • Nielsen, U. N., D. H. Wall, and J. Six. 2015. Soil biodiversity and the environment. Annual Review of Environment and Resources 40 (1):63–90. doi:10.1146/annurev-environ-102014-021257.
  • Nikitin, D. A., M. V. Semenov, T. I. Chernov, N. A. Ksenofontova, A. D. Zhelezova, E. A. Ivanova, N. B. Khitrov, and A. L. Stepanov. 2022. Microbiological indicators of soil ecological functions: A review. Eurasian Soil Science 55 (2):221–34. doi:10.1134/S1064229322020090.
  • Odelade, K. A., and O. O. Babalola. 2019. Bacteria, fungi and archaea domains in Rhizospheric Soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research Public Health 16 (20):3873. doi:10.3390/ijerph16203873.
  • Ortíz, N., E. Armada, E. Duque, A. Roldán, and R. Azcón. 2015. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology 174:87–96. doi:10.1016/j.jplph.2014.08.019.
  • Ossai, I. C., A. Ahmed, A. Hassan, and F. S. Hamid. 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation 17:100526. doi:10.1016/j.eti.2019.100526.
  • Ozlu, E., S. S. Sandhu, S. Kumar, and F. J. Arriaga. 2019. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Scientific Reports 9 (1):11776. doi:10.1038/s41598-019-48207-z.
  • Pérez‐Guzmán, L., L. Phillips, B. Seuradge, I. Agomoh, C. Drury, and V. Acosta‐Martínez. 2021. An evaluation of biological soil health indicators in four long‐term continuous agroecosystems in Canada. Agrosystems. Geosciences & Environment 4 (2):e20164. doi:10.1002/agg2.20164.
  • Ramadass, K., M. Megharaj, K. Venkateswarlu, and R. Naidu. 2015. Ecological implications of motor oil pollution: Earthworm survival and soil health. Soil Biology and Biochemistry 85:72–81. doi:10.1016/j.soilbio.2015.02.026.
  • Sahu, P. K., D. P. Singh, R. Prabha, K. K. Meena, and P. C. Abhilash. 2019. Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecological Indicators 105:601–12. doi:10.1016/j.ecolind.2018.05.084.
  • Sarker, T. C., M. Zotti, Y. Fang, F. Giannino, S. Mazzoleni, G. Bonanomi, Y. Cai, and S. X. Chang. 2022. Soil aggregation in relation to organic amendment: A synthesis. Journal of Soil Science and Plant Nutrition 22 (2):2481–502. doi:10.1007/s42729-022-00822-y.
  • Scavo, A., S. Fontanazza, A. Restuccia, G. R. Pesce, C. Abbate, and G. Mauromicale. 2022. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development 42 (5):93. doi:10.1007/s13593-022-00825-0.
  • Schloter, M., P. Nannipieri, S. J. Sørensen, and J. D. Van Elsas. 2018. Microbial indicators for soil quality. Biology and Fertility of Soils 54 (1):1–10. doi:10.1007/s00374-017-1248-3.
  • Sela, G. 2024. Soil organisms – promoting soil health. Cropaia. Accessed May 8, 2024. https://cropaia.Com/blog/soil-Organisms/.
  • Semy, K., M. R. Singh, M. Walling, W. Temjen, A. Jangir, and G. Mishra. 2022. Qualitative soil assessment of coal mine disturbed and undisturbed tropical forest in Nagaland, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 92:275–80.
  • Shaheb, M. R., A. Klopfenstein, R. Tietje, C. Wiegman, C. Dio, A. Scarfagna, K. Herink, N. Herbener, and S. Shearer. 2021. Evaluation of soil-tire interface pressure distributions and areas resulting from various tire and track technologies and configurations. In 2021 ASABE Annual International Meeting, Joseph, MI, 1–11. doi:10.13031/aim.202100889.
  • Shah, A. N., M. Tanveer, B. Shahzad, G. Yang, S. Fahad, S. Ali, M. A. Bukhari, S. A. Tung, A. Hafeez, and B. Souliyanonh. 2017. Soil compaction effects on soil health and cropproductivity: An overview. Environmental Science and Pollution Research 24 (11):10056–67. doi:10.1007/s11356-017-8421-y.
  • Shen, J., Y. Luo, Q. Tao, P. J. White, G. Sun, M. Li, J. Luo, Y. He, B. Li, Q. Li, et al. 2022. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. Science of the Total Environment 828:154524. doi:10.1016/j.scitotenv.2022.154524.
  • Skorobogatov, A., J. He, A. Chu, C. Valeo, and B. Van Duin. 2020. The impact of media, plants and their interactions on bioretention performance: A review. Science of the Total Environment 715:136918. doi:10.1016/j.scitotenv.2020.136918.
  • Talukder, R., D. Plaza-Bonilla, C. Cantero-Martínez, O. Wendroth, and J. L. Castel. 2022. Soil gas diffusivity and pore continuity dynamics under different tillage and crop sequences in an irrigated Mediterranean area. Soil and Tillage Research 221:105409. doi:10.1016/j.still.2022.105409.
  • Tantawy, M. F., M. E.-A.-A. Faragallah, M. Awad, and A. Abd El-Mageed. 2022. Phosphorus release from apatite mineral using some organic amendments and their effect on some clay loam soil properties. Archives of Agriculture Sciences Journal 38–52. doi:10.21608/aasj.2022.127621.1109.
  • Tibbett, M., T. D. Fraser, and S. Duddigan. 2020. Identifying potential threats to soil biodiversity. PeerJ 8:e9271. doi:10.7717/peerj.9271.
  • Topa, D., I. G. Cara, and G. Jităreanu. 2021. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. CATENA 199:105102. doi:10.1016/j.catena.2020.105102.
  • Trivedi, P., M. Delgado-Baquerizo, I. C. Anderson, and B. K. Singh. 2016. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Frontiers in Plant Science 7. doi:10.3389/fpls.2016.00990.
  • Vadakattu, G., and J. Germida. 2014. Soil aggregation: Influence on microbial biomass and implications for biological processes. Research Journal of Soil Biology 80:1–7.
  • Varjani, S., and V. N. Upasani. 2019. Comparing bioremediation approaches for agricultural soil affected with petroleum crude: A case study. Indian Journal of Microbiology 59 (3):356–64. doi:10.1007/s12088-019-00814-0.
  • Vieira, A. F., M. Moura, and L. Silva. 2021. Soil metagenomics in grasslands and forests – a review and bibliometric analysis. Applied Soil Ecology 167:104047. doi:10.1016/j.apsoil.2021.104047.
  • Vogel, H. J., S. Bartke, K. Daedlow, K. Helming, I. Kögel-Knabner, B. Lang, E. Rabot, D. Russell, B. Stößel, U. Weller, et al. 2018. A systemic approach for modeling soil functions. SOIL 4 (1):83–92. doi:10.5194/soil-4-83-2018.
  • Wei, X., B. Xie, C. Wan, R. Song, W. Zhong, S. Xin, and K. Song. 2024. Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy 14 (3):609. doi:10.3390/agronomy14030609.
  • Wieme, R. A., J. P. Reganold, D. W. Crowder, K. M. Murphy, and L. A. Carpenter-Boggs. 2020. Productivity and soil quality of organic forage, quinoa, and grain cropping systems in the dryland Pacific Northwest, USA. Agriculture, Ecosystems & Environment 293:106838. doi:10.1016/j.agee.2020.106838.
  • Wilhelm, R. C., E. S. Van, and D. H. Buckley. 2022. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biology & Biochemistry 164:108472. doi:10.1016/j.soilbio.2021.108472.
  • Xie, Y., Y. Ouyang, S. Han, J. Se, S. Tang, Y. Yang, Q. Ma, and L. Wu. 2022. Crop rotation stage has a greater effect than fertilisation on soil microbiome assembly and enzymatic stoichiometry. Science of the Total Environment 815:152956. doi:10.1016/j.scitotenv.2022.152956.
  • Xiong, C., Y. Zhu, J. Wang, B. Singh, L. Han, J. Shen, P. Li, G. Wang, C. Wu, A. Ge, et al. 2021. Host selection shapes crop microbiome assembly and network complexity. The New Phytologist 229 (2):1091–104. doi:10.1111/nph.16890.
  • Zaghloul, A., M. Saber, S. Gadow, and F. Awad. 2020. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bulletin of the National Research Centre 44 (1):127. doi:10.1186/s42269-020-00385-x.
  • Zhang, G., X. Sui, Y. Li, M. Jia, Z. Wang, G. Han, and L. Wang. 2020. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. Journal of Soils and Sediments 20 (4):2166–80. doi:10.1007/s11368-019-02555-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.