35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revegetating Mine Soils with Different Tree Species Influences Molecular Characteristics of Soil Organic Matter

, , , , , & show all
Pages 2578-2588 | Received 11 Jul 2023, Accepted 05 Jun 2024, Published online: 17 Jun 2024

References

  • Ahirwal, J., A. Kumar, and S. K. Maiti. 2020. Effect of fast-growing trees on soil properties and carbon storage in an afforested coal mine land (India). Minerals 10 (10):840. doi:10.3390/min10100840.
  • Ahirwal, J., and S. K. Maiti. 2017. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. Journal of Environment Management 201:369–77. doi:10.1016/j.jenvman.2017.07.003.
  • Akala, V. A., and R. Lal. 2001. Soil organic carbon pools and sequestration rates in reclaimed minesoils in Ohio. Journal of Environment Quality 30 (6):2098–104. doi:10.2134/jeq2001.2098.
  • Chan, K. Y., A. Booowman, and A. Oates. 2001. Oxidizible organic carbon fractions and soil quality changes in an oxicpaleustalf under different pasture leys. Soil Science 166 (1):61–67. doi:10.1097/00010694-200101000-00009.
  • Chaudhuri, S., E. M. Pena-Yewtukhiw, L. M. McDonald, and J. Skousen. 2015. Soil organic carbon molecular properties: Effects of time since reclamation in a mine soil chronosequence. Land Degradation and Development 26 (3):237–48. doi:10.1002/ldr.2202.
  • Csicsor, A., and E. Tombácz. 2022. Screening of humic substances extracted from leonardite for free radical scavenging activity using DPPH method. Oxycedrus Needles and Berries Molecules 27 (19):6334. doi:10.3390/molecules27196334.
  • Das, R., and S. K. Maiti. 2016. Estimation of carbon sequestration in reclaimed coalmine degraded land dominated by Albizia lebbeck, Dalbergia sissoo and Bambusa arundinacea plantation: A case study from Jharia Coalfields, India. International Journal of Coal Science and Technology 3 (2):246–66. doi:10.1007/s40789-016-0131-4.
  • Deng, L., G. L. Wang, G. B. Liu, and Z. P. Shangguan. 2016. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecological Engineering 90:105–12. doi:10.1016/j.ecoleng.2016.01.086.
  • Fuentes, M., G. Gonzales-Gaitano, and J. M. Garcia-Mina. 2006. The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry 37 (12):1949–59. doi:10.1016/j.orggeochem.2006.07.024.
  • Gautam, R. K., D. Navaratna, S. Muthukumaran, A. Singh, I. Islamuddin, and I. More. 2021. Humic substances: Its toxicology, chemistry and biology associated with soil, plants and environment. In Humic substances, Ed. Intech Open. doi:10.5772/intechopen.98518.
  • IHSS. 1981. Organic matter characterization. http://humic-substances.org/isolation-of-ihss-soil-fulvic-and-humic-acids/.
  • Kozak, C., J. Leithold, L. Do Prado, H. Knapik, J. de Azevedo Rodrigues, S. Braga, and C. Fernandes. 2021. Adaptive monitoring approach to assess dissolved organic matter dynamics during rainfall events. Environmental Monitoring and Assessment 193 (7):423. doi:10.1007/s10661-021-09183-y.
  • Lal, R., C. C. Cerri, M. Bernoux, J. Etcheves, and E. Cerri. 2006. Carbon sequestration in soils of Latin America, 49–64. (NY): Food Products Press.
  • Liu, Y., Y. Q. Su, L. L. Zhang, J. Wang, and X. M. Xu. 2013. Study on dynamic change of organic carbon in young Robinia pseudoacacia plantation in Loess Plateau. Journal of Nanjing Forestry University 37. doi:10.3969/j.issn.1000-2006.
  • Maiti, S. K. 2012. Ecorestoration of the coalmine degraded lands. (NY): Springer.
  • Naidja, A., P. M. Huang, D. W. Anderson, and C. Van Kessel. 2002. Fourier transform infrared, UV-Visible, and X-Ray diffraction analyses of organic matter in humin, humic acid, and fulvic acid fractions in Soil exposed to elevated CO 2 and N fertilization. Applied Spectroscopy 56 (3):318–24. doi:10.1366/0003702021954908.
  • Nocita, M., A. Stevens, B. van Wesemael, M. Aitkenhead, M. Bachmann, B. Barthès, E. Ben-Do, D. Brown, M. Clairotte, A. Csorba, et al. 2015. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Advances in Agronomy 132:139–59.
  • Oliviera, J. L., M. Boroski, J. C. R. Azevedo, and J. Nozaki. 2006. Spectroscopic investigation of humic substances in a tropical lake during a complete hydrological cycle. Acta Hydrochimica et Hydrobiologica 34 (6):608–17. doi:10.1002/aheh.200400659.
  • RStudio, Team. 2020. RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. http://www.rstudio.com/.
  • Schiavo, J. A., L. P. Canellas, and M. A. Martins. 2007. Revegetação de cava de extração de argila com Acacia mangium: I - atributos químicos do solo, ácidos fúlvicos e húmicos. Revista Brasileira de Ciência do Solo 31 (5):1153–62. doi:10.1590/S0100-06832007000500030.
  • Shrestha, R. K., and R. Lal. 2006. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment International 32 (6):781–96. doi:10.1016/j.envint.2006.05.001.
  • Silva, J. R., D. J. Silva, C. A. T. Gava, T. C. Oliveira, and M. S. C. Freitas. 2016. Carbon in humic fractions of organic matter in soil treated with organic composts under mango cultivation. Revista Brasileira de Ciência do Solo 40: doi:10.1590/18069657rbcs20150095.
  • Singh, P., and A. K. Ghofsh. 2020. Ratio of elements in humic acids extracted from restored mine soil as a measure of quality of carbon sequestered. International Journal of Chemical Studies 80 (2):1343–46. doi:10.22271/chemi.2020.v8.i6s.10948.
  • Singh, P., A. K. Ghosh, and S. Kumar. 2022. The role of input litter quality and quantity on soil organic matter formation and sequestration in rehabilitated mine soil. Indian Forester 148 (3):280–84. doi:10.36808/if/2022/v148i3/168353.
  • Singh, P., A. K. Ghosh, S. Kumar, S. L. Jat, S. Kumari, S. N. Pradhan, and K. Manoj. 2022. A molecular and spectroscopic approach to reclamation of coal mine soil using tree species: A case study of gevra mining area, Korba, India. Journal of Soil Science and Plant Nutrition 22 (2):2205–20. doi:10.1007/s42729-022-00803-1.
  • Singh, P., A. K. Ghosh, S. Kumar, M. Kumar, and P. Sinha. 2022. Influence of input litter quality and quantity on carbon storage in post-mining forest soil after 14 years of reclamation. Ecological Engineering 178 (4):106575. doi:10.1016/j.ecoleng.2022.106575.
  • Singh, P., S. Ram, H. Jayant, and A. K. Ghosh. 2015. Redevelopment of soil carbon pools and biological properties on restored mine spoils under plantation. Journal of Pure Applied Microbiology 9:3031–37.
  • Singh, P., and S. Kumari. 2017. Restoration of overburden coal mine spoil. Bulletin of Environment, Pharmacology and Life Sciences 6 (6):83–85.
  • Yu, H., B. Xi, J. Su, W. Ma, Z. Wei, X. He, and X. Guo. 2010. Spectroscopic properties of dissolved fulvic acids—an indicator for soil salinization in arid and semi-arid regions, China. Soil Science 175 (5):240–45. doi:10.1097/SS.0b013e3181e055b4.
  • Zhou, G., S. Xu, P. Ciais, S. Manzoni, J. Fang, G. Yu, X. Tang, P. Zhou, W. Wang, J. Yan, et al. 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Reviews 6 (4):746–57. Epub March 2, 2019. doi:10.1093/nsr/nwz045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.