1,107
Views
22
CrossRef citations to date
0
Altmetric
Review articles

All-laser-driven Thomson X-ray sources

Pages 417-431 | Received 02 Dec 2014, Accepted 19 Feb 2015, Published online: 24 Mar 2015

References

  • W.C. Röntgen, Ueber eine neue Art von Strahlen [A new kind of ray], Ann. Phys. 300 (1898), pp. 1–11.10.1002/(ISSN)1521-3889
  • P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, and F. Decker, First lasing and operation of an ångstrom-wavelength free-electron laser, Nat. Photonics 4 (2010), pp. 641–647.10.1038/nphoton.2010.176
  • A.L. Schawlow and C.H. Townes, Infrared and optical masers, Phys. Rev. 112 (1958), pp. 1940–1949.10.1103/PhysRev.112.1940
  • T.H. Maiman, Stimulated optical radiation in ruby, Nature 187 (1960), pp. 493–494.10.1038/187493a0
  • P.J. Wisoff, M.W. Bowers, G.V. Erbert, D.F. Browning, and D.R. Jedlovec, NIF injection laser system, Proc. SPIE 5341 (2004), pp. 146–155.
  • P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification, IEEE J. Quantum Electron. 24 (1988), pp. 398–403.10.1109/3.137
  • W. Rapoport and C.P. Khattak, Titanium sapphire laser characteristics, Appl. Opt. 27 (1988), pp. 2677–2684.10.1364/AO.27.002677
  • D.E. Spence, P.N. Kean, and W. Sibbett, 60-Fsec pulse generation from a self-mode-locked Ti: Sapphire laser, Opt. Lett. 16 (1991), pp. 42–44.10.1364/OL.16.000042
  • C. Liu, S. Banerjee, J. Zhang, S. Chen, K. Brown, J. Mills, N. Powers, B. Zhao, G. Golovin, and I. Ghebregziabher, Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration, SPIE LASE, San Francisco, CA, 2013.
  • T.M. Jeong and J. Lee, Femtosecond petawatt laser, Ann. Phys. 526 (2014), pp. 157–172.10.1002/andp.v526.3-4
  • F. Lureau, S. Laux, O. Casagrande, C. Radier, O. Chalus, F. Caradec, C. Derycke, P. Jougla, G. Brousse, and C. Simon-Boisson, High repetition rate petawatt titanium sapphire laser system for laser plasma acceleration, International Quantum Electronics Conference, Munich, Germany, 2013.
  • H. Kiriyama, M. Mori, A.S. Pirozhkov, K. Ogura, A. Sagisaka, A. Kon, T.Z. Esirkepov, Y. Hayashi, H. Kotaki, M. Kanasaki, H. Sakaki, Y. Fukuda, J. Koga, M. Nishiuchi, M. Kando, S.V. Bulanov, K. Kondo, P.R. Bolton, O. Slezak, D. Vojna, M. Sawicka-Chyla, V. Jambunathan, A. Lucianetti, and T. Mocek, High-contrast, high-intensity petawatt-class laser and applications, IEEE J. Sel. Topics Quantum Electron. 21 (2015), 1601118.
  • S. Chen, N.D. Powers, I. Ghebregziabher, C.M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, and D.P. Umstadter, MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons, Phys. Rev. Lett. 110 (2013), pp. 1–7, 155003.10.1103/PhysRevLett.110.155003
  • K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, and A. Rousse, All-optical Compton gamma-ray source, Nat. Photonics 6 (2012), pp. 308–311.
  • N.D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, S. Banerjee, J. Zhang, and D.P. Umstadter, Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source, Nat. Photonics 8 (2014), pp. 29–32.
  • B.L. Thiel, A.J. Cepler, A.C. Diebold, R.J. Matyi, D.G. Seiler, A.C. Diebold, R. McDonald, A. Chabli, and E.M. Secula, Advances in CD-metrology (CD-SAXS, Mueller matrix based scatterometry, and SEM), AIP Conf. Proc. 1395 (2011), pp. 298–304.
  • H. Quiney, Coherent diffractive imaging using short wavelength light sources, J. Mod. Opt. 57 (2010), pp. 1109–1149.10.1080/09500340.2010.495459
  • S. Banerjee, G. Golovin, S. Chen, N. Powers, D. Haden, C. Liu, G. Golovin, J. Zhang, B. Zhao, D. Umstadter, S. Clarke, S. Pozzi, J. Silano, and H. Karwowski, Compact source of narrowband and tunable X-rays for radiography, Nucl. Instrum. Methods Phys. Res., Sect. B, in press (2015). Available at http://www.sciencedirect.com/science/article/pii/S0168583X15000282#..
  • C. Bostedt, J. Bozek, P. Bucksbaum, R. Coffee, J. Hastings, Z. Huang, R. Lee, S. Schorb, J. Corlett, and P. Denes, Ultra-fast and ultra-intense x-ray sciences: First results from the Linac Coherent light source free-electron laser, J. Phys. B: At. Mol. Opt. Phys. 46 (2013), pp. 1–19, 164003.10.1088/0953-4075/46/16/164003
  • L. Chen, X. Zhang, and M. Shelby, Recent advances on ultrafast X-ray spectroscopy in the chemical sciences, Chem. Sci. 5 (2014), pp. 4136–4152.10.1039/C4SC01333F
  • T.R. Barends, L. Foucar, S. Botha, R.B. Doak, R.L. Shoeman, K. Nass, J.E. Koglin, G.J. Williams, S. Boutet, and M. Messerschmidt, De novo protein crystal structure determination from X-ray free-electron laser data, Nature 505 (2014), pp. 244–247.
  • H. Daido, Review of soft x-ray laser researches and developments, Rep. Prog. Phys. 65 (2002), p. 1513.10.1088/0034-4885/65/10/204
  • F. Albert, A. Thomas, S. Mangles, S. Banerjee, S. Corde, A. Flacco, M. Litos, D. Neely, J. Vieira, and Z. Najmudin, Laser wakefield accelerator based light sources: Potential applications and requirements, Plasma Phys. Controlled Fusion 56 (2014), p. 084015.10.1088/0741-3335/56/8/084015
  • S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, Femtosecond x rays from laser-plasma accelerators, Rev. Mod. Phys. 85 (2013), pp. 1–48.10.1103/RevModPhys.85.1
  • G.R. Blumenthal and R.J. Gould, Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases, Rev. Mod. Phys. 42 (1970), pp. 237–269.
  • A. Lightman and G. Rybicki, Inverse Compton reflection – Time-dependent theory, Astrophys. J. 232 (1979), pp. 882–890.10.1086/157350
  • J.D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999.
  • C.A. Brau, Modern Problems in Classical Electrodynamics, Oxford University Press, New York, NY, 2004.
  • J. Larmor, A dynamical theory of the electric and luminiferous medium. Part III. Relations with material media, Proc. R. Soc. London 61 (1897), pp. 272–285.10.1098/rspl.1897.0036
  • S.Y. Chen, A. Maksimchuk, and D. Umstadter, Experimental observation of relativistic nonlinear thomson scattering, Nature 396 (1998), pp. 653–655.
  • A. Compton, A quantum theory of the scattering of X-rays by light elements, Phys. Rev. 21 (1923), pp. 483–502.10.1103/PhysRev.21.483
  • R.H. Milburn, Electron scattering by an intense polarized photon field, Phys. Rev. Lett. 10 (1963), pp. 75–77.10.1103/PhysRevLett.10.75
  • M. Babzien, I. Ben-Zvi, K. Kusche, I.V. Pavlishin, I.V. Pogorelsky, D.P. Siddons, V. Yakimenko, D. Cline, F. Zhou, T. Hirose, Y. Kamiya, T. Kumita, T. Omori, J. Urakawa, and K. Yokoya, Observation of the second harmonic in Thomson Scattering from relativistic electrons, Phys. Rev. Lett. 96 (2006), pp. 1–4, 054802.10.1103/PhysRevLett.96.054802
  • E.S. Sarachik and G.T. Schappert, Classical theory of the scattering of intense laser radiation by free electrons, Phys. Rev. D. 1 (1970), pp. 2738–2753.10.1103/PhysRevD.1.2738
  • G. Fiocco and E. Thompson, Thomson scattering of optical radiation from an electron beam, Phys. Rev. Lett. 10 (1963), pp. 89–91.10.1103/PhysRevLett.10.89
  • F. He, Y.Y. Lau, D.P. Umstadter, and R. Kowalczyk, Backscattering of an intense laser beam by an electron, Phys. Rev. Lett. 90 (2003), pp. 1–4, 055002.10.1103/PhysRevLett.90.055002
  • Y.Y. Lau, F. He, D.P. Umstadter, and R. Kowalczyk, Nonlinear Thomson scattering: A tutorial, Phys. Plasmas 10 (2003), pp. 2155–2173.10.1063/1.1565115
  • P. Sprangle, E. Esarey, and A. Ting, Nonlinear theory of intense laser-plasma interactions, Phys. Rev. Lett. 64 (1990), pp. 2011–2014.10.1103/PhysRevLett.64.2011
  • E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas, IEEE Trans. Plasma Sci. 21 (1993), pp. 95–104.10.1109/27.221107
  • J.H. Eberly, VII interaction of very intense light with free electrons, in Progress in Optics, E. Wolf, ed., Elsevier, 1969, pp. 359–415. Available at http://www.sciencedirect.com/science/article/pii/S0079663808705985#.
  • S. Ride, E. Esarey, and M. Baine, Thomson scattering of intense lasers from electron beams at arbitrary interaction angles, Phys. Rev. E 52 (1995), pp. 5425–5442.10.1103/PhysRevE.52.5425
  • P. Catravas, E. Esarey, and W.P. Leemans, Femtosecond X-rays from thomson scattering using laser wakefield accelerators, Meas. Sci. Technol. 12 (2001), pp. 1828–1834.
  • H. Schwoerer, B. Liesfeld, H.P. Schlenvoigt, K.U. Amthor, and R. Sauerbrey, Thomson-backscattered X rays from laser-accelerated electrons, Phys. Rev. Lett. 96 (2006), p. 014802.10.1103/PhysRevLett.96.014802
  • H. Schwoerer, B. Liesfeld, H.P. Schlenvoigt, K.U. Amthor, and R. Sauerbrey, Thomson-backscattered X rays from laser-accelerated electrons, Phys. Rev. Lett. 96 (2006), pp. 1–4, 014802.
  • F. Hartemann, D. Gibson, W. Brown, A. Rousse, K. Phuoc, V. Mallka, J. Faure, and A. Pukhov, Compton scattering X-ray sources driven by laser wakefield acceleration, Phys. Rev. ST Accel. Beams 10 (2007), pp. 1–8, 011301.
  • I. Ghebregziabher, B.A. Shadwick, and D. Umstadter, Spectral bandwidth reduction of Thomson scattered light by pulse chirping, Phys. Rev. ST Accel. Beams 16 (2013), pp. 1–12, 030705.10.1103/PhysRevSTAB.16.030705
  • S. Rykovanov, C. Geddes, J. Vay, C. Schroeder, E. Esarey, and W. Leemans, Quasi-monoenergetic femtosecond photon sources from Thomson scattering using laser plasma accelerators and plasma channels, J. Phys. B: At. Mol. Opt. Phys. 47 (2014), pp. 1–22, 234013.10.1088/0953-4075/47/23/234013
  • E. Esarey, C. Schroeder, and W. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009), pp. 1229–1285.10.1103/RevModPhys.81.1229
  • V. Malka, Review of Laser Wakefield Accelerators, International Particle Accelerator Conference, Shanghai, China, 2013.
  • S. Hooker, Developments in laser-driven plasma accelerators, Nat. Photonics 7 (2013), pp. 775–782.10.1038/nphoton.2013.234
  • T. Tajima and J.M. Dawson, Laser electron accelerator, Phys. Rev. Lett. 43 (1979), pp. 267–270.10.1103/PhysRevLett.43.267
  • P. Mora and T.M. Antonsen Jr, Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse, Phys. Rev. E 53 (1996), pp. R2068–R2071.
  • A. Pukhov and J. Meyer-ter-Vehn, Laser wake field acceleration: The highly non-linear broken-wave regime, Appl. Phys. B 74 (2002), pp. 355–361.10.1007/s003400200795
  • W. Lu, C. Huang, M. Zhou, M. Tzoufras, F.S. Tsung, W.B. Mori, and T. Katsouleas, A nonlinear theory for multidimensional relativistic plasma wave wakefields, Phys. Plasmas 13 (2006), pp. 056709–056713.10.1063/1.2203364
  • S. Kalmykov, S.A. Yi, V. Khudik, and G. Shvets, Electron self-injection and trapping into an evolving plasma bubble, Phys. Rev. Lett. 103 (2009), pp. 1–4, 135004.10.1103/PhysRevLett.103.135004
  • S. Kneip, S.R. Nagel, S.F. Martins, S.P.D. Mangles, C. Bellei, O. Chekhlov, R.J. Clarke, N. Delerue, E.J. Divall, G. Doucas, K. Ertel, F. Fiuza, R. Fonseca, P. Foster, S.J. Hawkes, C.J. Hooker, K. Krushelnick, W.B. Mori, C.A.J. Palmer, K.T. Phuoc, P.P. Rajeev, J. Schreiber, M.J.V. Streeter, D. Urner, J. Vieira, L.O. Silva, and Z. Najmudin, Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse, Phys. Rev. Lett. 103 (2009), pp. 1–4, 035002.
  • D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons, Science 273 (1996), pp. 472–475.10.1126/science.273.5274.472
  • S.Y. Chen, G.S. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse, Phys. Rev. Lett. 80 (1998), pp. 2610–2613.10.1103/PhysRevLett.80.2610
  • C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature 431 (2004), pp. 538–541.10.1038/nature02900
  • G. Genoud, K. Cassou, F. Wojda, H. Ferrari, C. Kamperidis, M. Burza, A. Persson, J. Uhlig, S. Kneip, and S. Mangles, Laser-plasma electron acceleration in dielectric capillary tubes, Appl. Phys. B 105 (2011), pp. 309–316.10.1007/s00340-011-4639-4
  • D.P. Umstadter, Laser-wakefield accelerators: Glass-guiding benefits, Nat. Photonics 5 (2011), pp. 576–577.10.1038/nphoton.2011.235
  • S.Y. Kalmykov, A. Beck, S.A. Yi, V.N. Khudik, M.C. Downer, E. Lefebvre, B.A. Shadwick, and D.P. Umstadter, Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime, Phys. Plasmas 18 (2011), pp. 1–9, 056704.10.1063/1.3566062
  • S.F. Martins, R. Fonseca, W. Lu, W. Mori, and L. Silva, Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames, Nat. Phys. 6 (2010), pp. 311–316.10.1038/nphys1538
  • B.M. Cowan, S.Y. Kalmykov, A. Beck, X. Davoine, K. Bunkers, A.F. Lifschitz, E. Lefebvre, D.L. Bruhwiler, B.A. Shadwick, and D.P. Umstadter, Computationally efficient methods for modelling laser wakefield acceleration in the blowout regime, J. Plasma Phys. 78 (2012), pp. 469–482.10.1017/S0022377812000517
  • G. Stantchev, W. Dorland, and N. Gumerov, Fast parallel particle-to-grid interpolation for plasma PIC simulations on the GPU, J. Parallel Distr. Comput. 68 (2008), pp. 1339–1349.10.1016/j.jpdc.2008.05.009
  • H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E. Cowan, R. Sauerbrey, and M. Bussmann, PIConGPU: A fully relativistic particle-in-cell code for a GPU Cluster, IEEE Trans. Plasma Sci. 38 (2010), pp. 2831–2839.
  • J. Vay, D. Grote, R. Cohen, and A. Friedman, Novel methods in the particle-in-cell accelerator code-framework warp, Comput. Sci. Discovery 5 (2012), pp. 1–20, 014019.
  • F. Perez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes, Phys. Plasmas (1994-present). 19 (2012), pp. 1–12, 083104.
  • M. Everett, A. Lal, D. Gordon, C.E. Clayton, K.A. Marsh, and C. Joshi, Trapped electron acceleration by a laser-driven relativistic plasma wave, Nature 368 (1994), pp. 527–529.10.1038/368527a0
  • A. Modena, Z. Najmudin, A.E. Dangor, C.E. Clayton, K.A. Marsh, C. Joshi, V. Malka, C.B. Darrow, C. Danson, D. Neely, and F.N. Walsh, Electron acceleration from the breaking of relativistic plasma waves, Nature 377 (1995), pp. 606–608.10.1038/377606a0
  • J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, A laser–plasma accelerator producing monoenergetic electron beams, Nature 431 (2004), pp. 541–544.10.1038/nature02963
  • S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, and K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser–plasma interactions, Nature 431 (2004), pp. 535–538.10.1038/nature02939
  • S. Banerjee, N.D. Powers, V. Ramanathan, I. Ghebregziabher, K.J. Brown, C.M. Maharjan, S. Chen, A. Beck, E. Lefebvre, S.Y. Kalmykov, B.A. Shadwick, and D.P. Umstadter, Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime, Phys. Plasmas 19 (2012), pp. 1–8, 053703.10.1063/1.4718711
  • D. Umstadter, J.K. Kim, and E. Dodd, Laser injection of ultrashort electron pulses into wakefield plasma waves, Phys. Rev. Lett. 76 (1996), pp. 2073–2076.10.1103/PhysRevLett.76.2073
  • E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, and P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses, Phys. Rev. Lett. 79 (1997), pp. 2682–2685.10.1103/PhysRevLett.79.2682
  • J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel, Phys. Plasmas 17 (2010), pp. 1–8, 083107.
  • A.J. Gonsalves, K. Nakamura, C. Lin, D. Panasenko, S. Shiraishi, T. Sokollik, C. Benedetti, C.B. Schroeder, C.G.R. Geddes, J. van Tilborg, J. Osterhoff, E. Esarey, C. Toth, and W.P. Leemans, Tunable laser plasma accelerator based on longitudinal density tailoring, Nat. Phys. 7 (2011), pp. 862–866.10.1038/nphys2071
  • G. Golovin, S. Chen, N. Powers, C. Liu, S. Banerjee, J. Zhang, M. Zeng, Z. Sheng and D. Umstadter, Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection, Phys. Rev. ST Accel. Beams 18 (2015), pp. 1–6, 011301.
  • H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, and J. Lee, Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses, Phys. Rev. Lett. 111 (2013), p. 165002.10.1103/PhysRevLett.111.165002
  • X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. Yi, X. Zhang, W. Henderson, Y. Chang, R. Korzekwa, and H. Tsai, Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4 (2013), pp. 1–9.
  • P. Dong, S.A. Reed, S.A. Yi, S. Kalmykov, Z.Y. Li, G. Shvets, N.H. Matlis, C. McGuffey, S.S. Bulanov, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, T. Matsuoka, A.G.R. Thomas, V. Yanovsky, and M.C. Downer, Holographic visualization of laser wakefields, New J. Phys. 12 (2010), pp. 1–20, 045016.10.1088/1367-2630/12/4/045016
  • S.M. Hooker, E. Brunetti, E. Esarey, J.G. Gallacher, C.G.R. Geddes, A.J. Gonsalves, D.A. Jaroszynski, C. Kamperidis, S. Kneip, K. Krushelnick, W.P. Leemans, S.P.D. Mangles, C.D. Murphy, B. Nagler, Z. Najmudin, K. Nakamura, P.A. Norreys, D. Panasenko, T.P. Rowlands-Rees, C.B. Schroeder, C.S. Tóth, and R. Trines, GeV plasma accelerators driven in waveguides, Plasma Phys. Controlled Fusion 49 (2007), pp. B403–B410.10.1088/0741-3335/49/12B/S37
  • J. Osterhoff, A. Popp, Z. Major, B. Marx, T. Rowlands-Rees, M. Fuchs, M. Geissler, R. Hörlein, B. Hidding, S. Becker, E. Peralta, U. Schramm, F. Grüner, D. Habs, F. Krausz, S. Hooker, and S. Karsch, Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell, Phys. Rev. Lett. 101 (2008), pp. 1–4, 085002.
  • K. Schmid, A. Buck, C.M.S. Sears, J.M. Mikhailova, R. Tautz, D. Herrmann, M. Geissler, F. Krausz, and L. Veisz, Density-transition based electron injector for laser driven wakefield accelerators, Phys. Rev. ST Accel. Beams 13 (2010), pp. 1–5, 091301.
  • J.S. Liu, C.Q. Xia, W.T. Wang, H.Y. Lu, C. Wang, A.H. Deng, W.T. Li, H. Zhang, X.Y. Liang, Y.X. Leng, X.M. Lu, C. Wang, J.Z. Wang, K. Nakajima, R.X. Li, and Z.Z. Xu, All-optical cascaded laser wakefield accelerator using ionization-induced injection, Phys. Rev. Lett. 107 (2011), pp. 1–4, 035001.10.1103/PhysRevLett.107.035001
  • Y.-C. Ho, T.-S. Hung, C.-P. Yen, S.-Y. Chen, H.-H. Chu, J.-Y. Lin, J. Wang, and M.-C. Chou, Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide, Phys. Plasmas 18 (2011), pp. 1–7, 063102.
  • C. Liu, G. Golovin, S. Chen, J. Zhang, B. Zhao, D. Haden, S. Banerjee, J. Silano, H. Karwowski, and D. Umstadter, Generation of 9  MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light, Opt. Lett. 39 (2014), pp. 4132–4135.10.1364/OL.39.004132
  • J. Silano, H. Karwowski, S. Clarke, S. Pozzi, S. Banerjee, D. Haden, G. Golovin, S. Chen, I. Ghebregziabher, and C. Liu, Selective activation with all-laser-driven Thomson Γ-rays, 2013 IEEE International Conference on Technologies for Homeland Security (HST), Waltham, MA, 2013.
  • R.W. Schoenlein, W.P. Leemans, A.H. Chin, P. Volfbeyn, T.E. Glover, P. Balling, M. Zolotorev, K.-J. Kim, S. Chattopadhyay, and C.V. Shank, Femtosecond X-ray pulses at 0.4 A generated by 90  Thomson scattering: A tool for probing the structural dynamics of materials, Science 274 (1996), pp. 236–238.10.1126/science.274.5285.236
  • F. Albert, S.G. Anderson, D.J. Gibson, C.A. Hagmann, M.S. Johnson, M. Messerly, V. Semenov, M.Y. Shverdin, B. Rusnak, A.M. Tremaine, F.V. Hartemann, C.W. Siders, D.P. McNabb, and C.P.J. Barty, Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ-ray source, Phys. Rev. ST Accel. Beams 13 (2010), pp. 1–13, 070704.10.1103/PhysRevSTAB.13.070704
  • H.R. Weller, M.W. Ahmed, H. Gao, W. Tornow, Y.K. Wu, M. Gai and R. Miskimen, Research opportunities at the upgraded HI gamma S facility RID G-2589-2011, Prog. Part. Nucl. Phys. 62 (2009), pp. 257–303.
  • C. Chang, C. Tang, and J. Wu, High-gain Thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave, Phys. Rev. Lett. 110 (2013), pp. 1–5, 064802.10.1103/PhysRevLett.110.064802
  • K. Steiniger, M. Bussmann, R. Pausch, T. Cowan, A. Irman, A. Jochmann, R. Sauerbrey, U. Schramm, and A. Debus, Optical free-electron lasers with traveling-wave Thomson-scattering, J. Phys. B: At. Mol. Opt. Phys. 47 (2014), pp. 1–21, 234011.10.1088/0953-4075/47/23/234011
  • F. He, Y. Lau, and D. Umstadter, Ultra-short wavelength X-ray system, US Patent 7,321,604 (2008).
  • P. Sprangle, B. Hafizi, and J.R. Penano, Laser-pumped coherent X-ray free-electron laser, Phys. Rev. ST Accel. Beams 12 (2009), pp. 1–12, 050702.
  • Z. Huang, Y. Ding, and C.B. Schroeder, Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator, Phys. Rev. Lett. 109 (2012), pp. 1–5, 204801.10.1103/PhysRevLett.109.204801
  • M. Fuchs, R. Weingartner, A. Popp, Z. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Zeitler, R. Hörlein, G.D. Tsakiris, U. Schramm, T.P. Rowlands-Rees, S.M. Hooker, D. Habs, F. Krausz, S. Karsch, and F. Grüner, Laser-driven soft-X-ray undulator source, Nat. Phys. 5 (2009), pp. 826–829.10.1038/nphys1404
  • D. Umstadter, Extreme X rays probe extreme matter, Physics 5 (2012), pp. 88–89.10.1103/Physics.5.88
  • P. Suortti and W. Thomlinson, Medical applications of synchrotron radiation, Phys. Med. Biol. 48 (2003), pp. R1–R35.10.1088/0031-9155/48/13/201
  • E. Kwan, G. Rusev, A.S. Adekola, F. Dönau, S.L. Hammond, C.R. Howell, H.J. Karwowski, J.H. Kelley, R.S. Pedroni, R. Raut, A.P. Tonchev, and W. Tornow, Discrete deexcitations in U-235 below 3 MeV from nuclear resonance fluorescence, Phys. Rev. C 83 (2011), pp. 1–5, 041601.10.1103/PhysRevC.83.041601
  • E.C. Schreiber, R.S. Canon, B.T. Crowley, C.R. Howell, J.H. Kelley, V.N. Litvinenko, S.O. Nelson, S.H. Park, I.V. Pinayev, R.M. Prior, K. Sabourov, M. Spraker, W. Tornow, Y. Wu, E.A. Wulf, and H.R. Weller, First measurement of the near-threshold 2H(γ→,n)p analyzing power using a free-electron laser based γ-ray source, Phys. Rev. C 61 (2000), p. 061604.10.1103/PhysRevC.61.061604
  • F. Albert, S.G. Anderson, G.A. Anderson, S.M. Betts, D.J. Gibson, C.A. Hagmann, J. Hall, M.S. Johnson, M.J. Messerly, V.A. Semenov, M.Y. Shverdin, A.M. Tremaine, F.V. Hartemann, C.W. Siders, D.P. McNabb, and C.P.J. Barty, Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays, Opt. Lett. 35 (2010), pp. 354–356.10.1364/OL.35.000354
  • D. Umstadter and S. Banerjee, Laser-based accelerator for interrogation of remote containers, US Patent 8,705,692 (2014).
  • S. Lacombe, L. Sabatier, F. Wien, and Y.A. Gauduel, Spatio-temporal radiation biology: New insights and biomedical perspectives, Cell Death and Dis. 1 (2010), pp. e4–e7.10.1038/cddis.2009.5
  • B. Girolami, B. Larsson, M. Preger, C. Schaerf, and J. Stepanek, Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons, Phys. Med. Biol. 41 (1996), pp. 1581–1596.10.1088/0031-9155/41/9/002
  • K.J. Weeks, Radiation therapy potential of intense backscattered Compton photon beams, Nucl. Instrum. Methods Phys. Res., Sect. A 393 (1997), pp. 544–547.10.1016/S0168-9002(97)00561-5
  • B.B. Pollock, C.E. Clayton, J.E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S.H. Glenzer, K. Herpoldt, W. Lu, K.A. Marsh, J. Meinecke, W.B. Mori, A. Pak, T.C. Rensink, J.S. Ross, J. Shaw, G.R. Tynan, C. Joshi, and D.H. Froula, Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator, Phys. Rev. Lett. 107 (2011), pp. 1–4, 045001.10.1103/PhysRevLett.107.045001
  • K. Schmid, L. Veisz, F. Tavella, S. Benavides, R. Tautz, D. Herrmann, A. Buck, B. Hidding, A. Marcinkevicius, U. Schramm, M. Geissler, J. Meyer-ter-Vehn, D. Habs, and F. Krausz, Few-cycle laser-driven electron acceleration, Phys. Rev. Lett. 102 (2009), pp. 1–4, 124801.10.1103/PhysRevLett.102.124801
  • D. Habs, T. Tajima, J. Schreiber, C.P.J. Barty, M. Fujiwara, and P.G. Thirolf, Vision of nuclear physics with photo-nuclear reactions by laser-driven $\sf \gamma$ beams, Eur. Phys. J. D. 55 (2009), pp. 279–285.10.1140/epjd/e2009-00101-2
  • H.A. Weidenmüller, Nuclear excitation by a zeptosecond multi-MeV laser pulse, Phys. Rev. Lett. 106 (2011), pp. 1–4, 122502.10.1103/PhysRevLett.106.122502
  • A. Di Piazza, K.Z. Hatsagortsyan, and C.H. Keitel, Strong signatures of radiation reaction below the radiation-dominated regime, Phys. Rev. Lett. 102 (2009), pp. 1–4, 254802.10.1103/PhysRevLett.102.254802
  • Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, and H. Ruhl, Effects of radiation reaction in relativistic laser acceleration, Phys. Rev. D 82 (2010), pp. 1–16, 096012.10.1103/PhysRevD.82.096012
  • R.T. Hammond, Radiation reaction at ultrahigh intensities, Phys. Rev. A 81 (2010), pp. 1–5, 062104.10.1103/PhysRevA.81.062104
  • A.G.R. Thomas, C.P. Ridgers, S.S. Bulanov, B.J. Griffin, and S.P.D. Mangles, Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam, Phys. Rev. X 2 (2012), pp. 1–13, 041004.10.1103/PhysRevX.2.041004
  • R. O’Connell, Radiation reaction: General approach and applications, especially to electrodynamics, Contemp. Phys. 53 (2012), pp. 301–313.10.1080/00107514.2012.688563
  • D.A. Burton and A. Noble, Aspects of electromagnetic radiation reaction in strong fields, Contemp. Phys. 55 (2014), pp. 110–121.10.1080/00107514.2014.886840
  • G. Sarri, D. Corvan, W. Schumaker, J. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, and S. Mangles, Ultrahigh brilliance multi-MeV Γ-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014), pp. 1–5, 224801.10.1103/PhysRevLett.113.224801
  • H. Tsai, X. Wang, J. Shaw, Z. Li, A.V. Arefiev, X. Zhang, R. Zgadzaj, W. Henderson, V. Khudik, G. Shvets, and M.C. Downer, Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22 (2015), pp. 1–9, 023106.10.1063/1.4907655

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.