524
Views
21
CrossRef citations to date
0
Altmetric
Review articles celebrating the International Year of Light

Shimony–Wolf states and hidden coherences in classical light

Pages 407-416 | Received 06 Jul 2015, Accepted 03 Aug 2015, Published online: 21 Sep 2015

References

  • E. Wolf, Introduction to the Theory of Coherence and Polarization of Light, Cambridge University Press, 2007. An earlier partial account is given in Phys. Lett. A 312 (2003), p. 263.
  • E. Wolf, A macroscopic theory of interference and diffraction of light from finite sources -- II. Fields with a spectral range of arbitrary width, Proc. R. Soc. A 230 (1955), p. 246.
  • E. Wolf, Reciprocity inequalities, coherence time and bandwidth in signal analysis and optics, Proc. Phys. Soc. 71 (1958), p. 257.
  • E. Wolf, Coherence properties of partially polarized electromagnetic radiation, Nuovo Cimento 13 (1959), p. 165.
  • The formulation we have followed is closely modeled on M. Born and E. Wolf, Principles of Optics, Chapter 10, 7th ed., Cambridge University Press, Cambridge, 1999, especially Section. 10.3.
  • A complete orthonormal set of time functions directly determined by the random process itself can be obtained as eigenfunctions of the integral equation in which the kernel is the random signal’s autocorrelation function M.Kac and J.F.Siegert, An explicit representation of a stationary gaussian process, Ann. Math. Stat. 18 (1947), pp. 438–442 L.Mandel and E.Wolf, Optical Coherence and Quantum Optics, Chapter 2, Cambridge University Press, 1995.
  • For example, see C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, Wiley, New York, 1998. E.Wolf, Introduction to the Theory of Coherence and Polarization of Light, Cambridge University Press, 2007.
  • R.J. Glauber, selected lectures with reprints in Quantum Optics and Electronics, C. DeWitt, ed., Gordon and Breach, New York, 1965. pp. ix--621.
  • L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Chapters 10--14, Cambridge University Press, Cambridge, 1995.
  • An important exception is found in the detailed analysis of multiple state sectors, in connection with experiments in the space-polarization domain: K.H. Kagalwala, G. DiGiuseppe, A.F. Abouraddy, and B.E.A Saleh, Bell’s measure in classical optical coherence, Nat. Photonics. 7 (2013), p. 72.
  • For example, see an analog Poincaré sphere representation for (t;r) off-diagonal ‘polarization’ in X.-F. Qian, et al, Transverse mode ‘polarization’ in optical beams, in Quantum Electronics I, Frontiers in Optics Conference, San Jose, CA, October 20, 2015.
  • A. Shimony, Contextual hidden variables theories and Bell’s inequalities, Br. J. Philos. Sci.. 35 (1984), pp. 25–45. See also A. Shimony, Bell’s theorem, in Stanford Encycl. of Philosophy, 2009. Available at http:/plato.stanford.edu/entries/bell-theorem.
  • J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23 (1969), p. 880.
  • J.F. Clauser and A. Shimony, Bell’s theorem -- experimental tests and implications, Rep. Prog. Phys.. 41 (1978), pp. 1881–1927.
  • J.S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), pp. 195; J.S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38 (1966), pp. 447–452.
  • J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd ed., Cambridge University Press, Cambridge, 2004, See Essays 4, 7, 16, and 24.
  • E. Schr\"{o}dinger, Discussion of probability relations between separated systems, Proc. Cambridge Philos. Soc. 31 (1935), pp. 555. His reference to the classic mathematical physics text by Courant and Hilbert is key: Methoden der mathematischen Physik, 2nd ed., p. 134.
  • R.J.C. Spreeuw, A classical analogy of entanglement, Found. Phys. 28 (1998), pp. 361–374.
  • P.Ghose and M.K.Samal, EPR type nonlocality in classical electrodynamics, (2001), arXiv:quant-ph/0111119.
  • K.F. Lee and J.E. Thomas, Entanglement with classical fields, Phys. Rev. Lett. 88 (2002), p. 097902.
  • K.F. Lee, Observation of bipartite correlations using coherent light for optical communication, Opt. Lett. 34 (2009), p. 1099.
  • C.V.S. Borges, M. Hor-Meyll, J.A.O. Huguenin, and A.Z. Khoury, Bell-like Inequality for the spin-orbit separability of a laser beam, Phys. Rev. A 82 (2010), p. 033833.
  • M.A. Goldin, D. Francisco, and S. Ledesma, Simulating Bell inequality violations with classical optics encoded qubits, J. Opt. Soc. Am. 27 (2010), p. 779.
  • B.N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, Nonquantum entanglement resolves a basic issue in polarization optics, Phys. Rev. Lett. 104 (2010), pp. 023901. See also M. Sanjay Kumarand R. Simon Characterization of Mueller matrices in polarization optics, Opt. Commun. 88 (1992), pp. 464 and A. Aiello and J.P. Woerdman, Role of spatial coherence in polarization tomography, Opt. Lett. 30 (2005), p. 1599.
  • C. Gabriel, et al., Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes, Phys. Rev. Lett. 106 (2011), p. 060502.
  • X.F. Qian and J.H. Eberly, Entanglement and classical polarization states, Opt. Lett. 36 (2011), p. 4110. See also T. Set\"{a}l\"{a} , A. Shevchenko , andA. Friberg, Degree of polarization for optical near fields Phys. Rev. E 66 (2002), pp. 016615, and J. Ellis and A. Dogariu, Optical polarimetry of random fields, Phys. Rev. Lett. 95 (2005), p. 203905.
  • C. Gabriel, A. Aiello, S. Berg-Johansen, et al., Tools for detecting entanglement between different degrees of freedom in quadrature squeezed cylindrically polarized modes, Eur. Phys. J. D 66 (2012), p. 172.
  • K.H. Kagalwala, G. DiGiuseppe, A.F. Abouraddy, and B.E.A. Saleh, Bell’s measure in classical optical coherence, Nat. Photonics 7 (2013), p. 72.
  • F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, Classical entanglement in polarization metrology, New J. Phys. 16 (2014), p. 073019.
  • A. Aiello et al, Quantum-like nonseparable structures in optical beams, New J. Phys. 17 (2015), pp. 043024. See also Annemarie Holleczek, et al. Poincaré sphere representation for classical inseparable Bell-like states of the electromagnetic field, (2010), arXiv:1007.2528.
  • Yi Fan Sun, Xinbing Song, Hongwei Qin, et al., Non-local classical optical correlation and implementing analogy of quantum teleportation, Sci. Rep. 5 (2015), p. 9175.
  • X.F. Qian, Bethany Little, J.C. Howell, and J.H. Eberly, Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields, Optica 2 (2015), p. 611.
  • S.M. Hashemi, M. Mirhosseini, O.S. Magaa, et al., Teleportation via classical entanglement, (2015). arXiv:1504.00697.
  • S.Berg-Johansen et al., Classically entangled optical beams for high-speed kinematic sensing, (2015), arXiv:1504.00697.
  • B. Stoklasa, L. Motka, and J. Rehacek et al, Experimental violation of a Bell-like inequality with optical vortex beams, (2015), arXiv:1505.06103.
  • A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 (1935), p. 777.
  • The original paper is: E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. 1. Entwicklung willküriger Funktionen nach Systeme vorgeschriebener, Math. Ann. 63 (1907), p. 433. See, for example, A. Ekert and P.L. Knight, Entangled quantum-systems and the Schmidt decomposition, Am. J. Phys. 63 (1995), p. 415. The Schmidt theorem is the analytic function analog of the singular-value decomposition theorem for matrices. For background, see M.V. Fedorov and N.I. Miklin, Schmidt modes and entanglement, Contem. Phys. 55 (2014), p. 94.
  • N. Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A 154 (1991), p. 201.
  • S.J. Freedman and J.F. Clauser, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28 (1972), p. 938.
  • A. Aspect, P. Grangier, and G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell’s inequalities, Phys. Rev. Lett. 49 (1982), p. 91. and A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49 (1982), p. 1804.
  • E.S. Fry and R.C. Thompson, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 37 (1976), pp. 465–468.
  • Z.Y. Ou and L. Mandel, Violation of Bell’s inequality and classical probability in a 2-photon correlation experiment, Phys. Rev. Lett. 61 (1988), p. 50.
  • Y.-H. Shih and C.O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, Phys. Rev. Lett. 61 (1988), p. 2921.
  • W.H.Zurek, in response to a pre-publication description of [29] in the Academia Leopldina Workshop Quantum technologies, München, May 9--10, 2011.
  • F. De Zela, Relationship between the degree of polarization, indistinguishability, and entanglement, Phys. Rev. A 89 (2014), p. 013845.
  • D.M. Greenberger and A. Yasin, Simultaneous wave and particle knowledge in a neutron interferometer, Phys. Lett. A 128 (1988), p. 391.
  • L. Mandel, Coherence and indistinguishability, Opt. Lett. 16 (1991), p. 1882.
  • G. Jaeger, M.A. Horne, and A. Shimony, Complementarity of One-particle and Two-particle Interference, Phys. Rev. A 48 (1993), pp. 1023–1027.
  • G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51 (1995), pp. 54–67.
  • B.-G. Englert, Fringe visibility and which-way information: an inequality, Phys. Rev. Lett. 77 (1996), p. 2154.
  • M. Lahiri, Wave-particle duality and polarization properties of light in single-photon interference experiments, Phys. Rev. A 83 (2011), p. 045803.
  • See A. Al-Qasimi, et al., for a study of the role of two-sector mixed-state entanglement following a higher-sector tracing (in preparation).
  • See X.-F. Qian, M.A. Alonso, and J.H. Eberly, Entanglement constraints in multi-qubit systems, in Quantum Electronics I, Frontiers in Optics Conference, San Jose, CA, October 20, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.