1,998
Views
20
CrossRef citations to date
0
Altmetric
Articles

Superconducting photon detectors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 69-91 | Received 09 Dec 2021, Accepted 14 Dec 2021, Published online: 11 Mar 2022

References

  • Richards PL. Bolometers for infrared and millimeter waves. J App Phys. 1994;76:1–24.
  • Silberhorn C. Detecting quantum light. Contemp Phys. 2007;48:143–156.
  • Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photon. 2009;3:696–705.
  • Eisaman MD, Fan J, Migdall A, et al. Invited review article: single-photon sources and detectors. Rev Sci Instrum. 2011;82:071101.
  • Natarajan CM, Tanner MG, Hadfield RH. Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol. 2012;25:063001.
  • Holzman I, Ivry Y. Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv Quantum Technol. 2019;2:1800058.
  • Ullom JN, Bennett DA. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond Sci Technol. 2015;28:084003.
  • Zmuidzinas J, Richards PL. Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proc IEEE. 2004;92:1597–1616.
  • Zmuidzinas J. Superconducting microresonators: physics and applications. Annu Rev Condens Matter Phys. 2012;3:169–214.
  • Steinhauer S, Gyger S, Zwiller V. Progress on large-scale superconducting nanowire single-photon detectors. Appl Phys Lett. 2021;118:100501.
  • Zadeh IE, Chang J, Los JWN, et al. Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications. Appl Phys Lett. 2021;118:190502.
  • Smith A. Selected papers on photon-counting detectors. SPIE Milestone Series. 1998;MS 143.
  • A. Migdall, S. V. Polyakov, J. Fan and J. C. Bienfang, editor, “Single-photon generation and detection,” in Single-photon generation and detection, vol. 45, Academic Press; 2013, p. iii.
  • Hadfield RH, Johansson G, editors. Superconducting devices in quantum optics, 1 ed. Switzerland: Springer International Publishing; 2016, pp. XIII, 249.
  • Booth NE, Goldie DJ. Superconducting particle detectors. Supercond Sci Technol. July 1996;9:493–516.
  • Twerenbold D. Cryogenic particle detectors. Rep Prog Phys. 1996;59:349–426.
  • Lewis GN. The conservation of photons. Nature. 1926;118:874–875. See also APS News 21, 11 December 2012.
  • Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. Photons and atoms – introduction to quantum electrodynamics. Wiley-VCH; 1997.
  • Loudon R. The quantum theory of light, 3 ed., Oxford University Press; 2000. p. 448.
  • Planck M, Masius M. The theory of heat radiation. Philadelphia: P. Blakiston's Son & Co.; 1914.
  • Planck M. Verhandl. Dtsch. Phys. Ges. 1900;2:202.
  • Ter Haar D. The old quantum theory. Pergamon; 1967.
  • Einstein A. Ann Phys. 1905;17:132–147.
  • Arons AB, Peppard MB. Einstein's proposal of the photon concept—a translation of the Annalen der Physik paper of 1905. Am J Phys. 1965;33:367–374.
  • Compton AH. The spectrum of scattered X-rays. Phys Rev. 1923;22(5):409–413.
  • Technical Report on Quantum Cryptography Technology Experts Panel, ARDA. http://qist.lanl.gov/, 2004.
  • Ekert A, Gisin N, Huttner B, et al. Quantum cryptography. In: D Bouwmeester, A Ekert, A Zeilinger, editor. The physics of quantum information: Quantum cryptography, quantum teleportation, quantum computation. Berlin, Heidelberg: Springer; 2000. p. 15–48.
  • Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum. 1995;66:2922–2926.
  • Knemeyer J-P, Marmé N, Sauer M. Probes for detection of specific DNA sequences at the single-molecule level. Anal Chem. 000;72:3717–3724.
  • Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999;283(5408):1676–1683.
  • Boas DA, Brooks DH, Miller EL, et al. Imaging the body with diffuse optical tomography. IEEE Signal Process Mag. 2001;18:57–75.
  • Jarvi MT, Niedre MJ, Patterson MS, et al. Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects. Photochem Photobiol. 2006;82:1198–1210.
  • Viterbini M, Adriani A, Di Donfrancesco G. Single photon detection and timing system for a lidar experiment. Rev Sci Instrum. 1987;58:1833–1839.
  • Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55µm up-conversion photon-counting module. Opt Express. June 2007;15:8237–8242.
  • Hemmati H, Biswas A, Djordjevic IB. Deep-space optical communications: future perspectives and applications. Proc IEEE. 2011;99:2020–2039.
  • Stellari F, Tosi A, Zappa F, et al. CMOS circuit testing via time-resolved luminescence measurements and simulations. IEEE Trans Instrum Meas. 2004;53:163–169.
  • Verma VB, Korzh B, Walter AB, et al. Single-photon detection in the mid-infrared up to 10 µm wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics. 2021;6:056101.
  • Onnes HK. Commun. Phys. Lab Univ. Leiden. Suppl. 1911;29.
  • Meissner W, Ochsenfeld R. Naturwissenschaften. 1933;21:787.
  • London F. On the problem of the molecular theory of superconductivity. Phys Rev. 1948;74(5):562–573.
  • Ginzburg VL, Landau LD. On the theory of superconductivity. Zh Eksp Teor Fiz. 1950;20:1064–1082.
  • London F, London H, Lindemann FA. The electromagnetic equations of the supraconductor. Proc Royal Soc London A Math Phys Sci. 1935;149:71–88.
  • Josephson BD. Possible new effects in superconductive tunnelling. Phys Lett. 1962;1:251–253.
  • Anderson PW, Rowell JM. Probable observation of the Josephson superconducting tunneling effect. Phys Rev Lett. March 1963;10(6):230–232.
  • Bardeen J, Cooper LN, Schrieffer JR. Microscopic theory of superconductivity. Phys Rev.  1957;106(1):162–164.
  • Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108(5):1175–1204.
  • Gor'kov LP. Microscopic derivation of the Ginzburg–Landau equations in the theory of Soviet Physics. JETP. 1959;36(9):1364.
  • Abrikosov AA. On the magnetic properties of superconductors of the second group. Sov Phys JETP. 1957;5:1174–1182.
  • Barone A, Paternò G. Front matter. In: Physics and applications of the Josephson effect. John Wiley & Sons, Ltd; 1982. p. i–xix.
  • Likharev KK. Superconducting weak links. Rev Mod Phys. 1979;51(1):101–159.
  • Semenov AD, Goltsman GN, Sobolewski R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond Sci Technol. 2002;15:R1–R16.
  • Rothwarf A, Taylor BN. Measurement of recombination lifetimes in superconductors. Phys Rev Lett. July 1967;19(1):27–30.
  • Kozorezov AG, Volkov AF, Wigmore JK, et al. Quasiparticle-phonon downconversion in nonequilibrium superconductors. Phys Rev B. 2000;61(17):11807–11819.
  • Zehnder A. Response of superconductive films to localized energy deposition. Phys Rev B. 1995;52(17):12858–12866.
  • Twerenbold D. Giaever-type superconducting tunnelling junctions as high-resolution X-ray detectors. Europhys Lett. 1986;1:209–214.
  • Peacock A, Verhoeve P, Rando N, et al. Single optical photon detection with a superconducting tunnel junction. Nature. 1996;381:135–137.
  • Moseley SH, Mather JC, McCammon D. Thermal detectors as x-ray spectrometers. J Appl Phys. 1984;56:1257–1262.
  • Fukuda D, Fujii G, Numata T, et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling. Opt Express. January 2011;19:870–875.
  • Irwin KD. SQUIDs and transition-edge sensors. J Supercond Novel Magn. 2021;34:1601–1606.
  • Day PK, LeDuc HG, Mazin BA, et al. A broadband superconducting detector suitable for use in large arrays. Nature. 2003;425:817–821.
  • Gao J, Vissers MR, Sandberg MO, et al. A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics. Appl Phys Lett. 2012;101:142602.
  • Rowe S, Pascale E, Doyle S, et al. A passive terahertz video camera based on lumped element kinetic inductance detectors. Rev Sci Instrum. 2016;87:033105.
  • Gol’tsman GN, Okunev O, Chulkova G, et al. Picosecond superconducting single-photon optical detector. Appl Phys Lett. 2001;79:705–707.
  • Dauler EA, Grein ME, Kerman AJ, et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance. Opt Eng. 2014;53:1–13.
  • Semenov AD, Gol'tsman GN, Korneev AA. Quantum detection by current carrying superconducting film. Phys C. 2001;351:349–356.
  • Zotova AN, Vodolazov DY. Photon detection by current-carrying superconducting film: A time-dependent Ginzburg–Landau approach. Phys Rev B. 2012;85(2):024509.
  • Engel A, Renema JJ, Il'in K, et al. Detection mechanism of superconducting nanowire single-photon detectors. Supercond Sci Technol. 2015;28:114003.
  • Reddy DV, Nerem RR, Nam SW, et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica. 2020;7:1649–1653.
  • Korzh B, Zhao Q-Y, Allmaras JP, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat Photonics. 2020;14:250–255.
  • Lita AE, Miller AJ, Nam SW. Counting near-infrared single-photons with 95% efficiency. Opt Express. March 2008;16:3032–3040.
  • Shurakov A, Lobanov Y, Goltsman G. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications. Supercond Sci Technol. 2015;29:023001.
  • Karasik BS, Sergeev AV, Prober DE. Nanobolometers for THz photon detection. Terahertz Sci Technol IEEE Trans. 2011;1:97–111.
  • Friedrich S. Superconducting tunnel junction photon detectors: theory and applications. J Low Temp Phys. 2008;151:277–286.
  • Lita AE, Calkins B, Pellouchoud LA, et al. Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors. Proc SPIE. 2010;7681:71–80.
  • Doyle S, Mauskopf P, Naylon J, et al. Lumped element kinetic inductance detectors. J Low Temp Phys. 2008;151:530–536.
  • You L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics. 2020;9:2673–2692.
  • Wei J, Olaya D, Karasik BS, et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat Nanotechnol. 2008;3:496–500.
  • Kreisler AJ, Gaugue A. Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range. Supercond Sci Technol. 2000;13:1235–1245.
  • Yang C, Niu RR, Guo ZS, et al. Lumped element kinetic inductance detectors based on two-gap MgB2 thin films. Appl Phys Lett. 2018;112:022601.
  • Cherednichenko S, Acharya N, Novoselov E, et al. Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications. Supercond Sci Technol. 2021;34:044001.
  • Lindeman MA, Bonetti JA, Bumble B, et al. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers. J Appl Phys. 2014;115:234509.
  • Arpaia R, Ejrnaes M, Parlato L, et al. High-temperature superconducting nanowires for photon detection. Physica C. 2015;509:16–21.
  • Mazin BA. Superconducting materials for microwave kinetic inductance detectors. arXiv:2004.14576. 2020.
  • Banerjee A, Baker LJ, Doye A, et al. Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires. Supercond Sci Technol. 2017;30:084010.
  • Verma VB, Lita AE, Vissers MR, et al. Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film. Appl Phys Lett. 2014;105:022602.
  • Ganni V, Fesmire J. Cryogenics for superconductors: refrigeration, delivery, and preservation of the cold. AIP Conf Proc. 2012;1434:15–27.
  • Radenbaugh R. Refrigeration for superconductors. Proc IEEE. 2004;92:1719–1734.
  • Hadfield RH, Stevens MJ, Gruber SS, et al. Single photon source characterization with a superconducting single photon detector. Opt Express. 2005;13:10846–10853.
  • Gemmell NR, Hills M, Bradshaw T, et al. A miniaturized 4 K platform for superconducting infrared photon counting detectors. Supercond Sci Technol. 2017;30:11LT01.
  • Xi X, Wang J, Chen L, et al. Progress and challenges of sub-kelvin sorption cooler and its prospects for space application. J Low Temp Phys. 2020;199:1363–1381.
  • Oguri S, Ishitsuka H, Choi J, et al. Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system. Rev Sci Instrum. 2014;85:086101.
  • Klemencic GM, Ade PAR, Chase S, et al. A continuous dry 300 mK cooler for THz sensing applications. Rev Sci Instrum. 2016;87:045107.
  • Devlin MJ, Dicker SR, Klein J, et al. A high capacity completely closed-cycle 250 mK 3He refrigeration system based on a pulse tube cooler. Cryogenics. 2004;44:611–616.
  • Clark AM, Miller NA, Williams A, et al. Cooling of bulk material by electron-tunneling refrigerators. Appl Phys Lett. 2005;86:173508.
  • de Waele ATAM. Basic operation of cryocoolers and related thermal machines. J Low Temp Phys. 2011;164:179.
  • Teleberg G, Chase ST, Piccirillo L. A cryogen-free miniature dilution refrigerator for low-temperature detector applications. J Low Temp Phys. 2008;151:669–674.
  • Balli M, Jandl S, Fournier P, et al. Advanced materials for magnetic cooling: fundamentals and practical aspects. Appl Phys Rev. 2017;4:021305.
  • Lerou PPPM, Venhorst GCF, Berends CF, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology. J Micromech Microeng. 2006;16:1919–1925.
  • Cao HS, ter Brake HJM. Progress in and outlook for cryogenic microcooling. Phys Rev Appl. 2020;14(4):044044.
  • Leivo MM, Pekola JP, Averin DV. Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions. Appl Phys Lett. 1996;68:1996–1998.
  • Dreyling-Eschweiler J, Bastidon N, Döbrich B, et al. Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment. J Mod Opt. 2015;62:1132–1140.
  • Bähre R, Döbrich B, Dreyling-Eschweiler J, et al. Any light particle search II — Technical design report. JINST; 2013;8:T09001–T09001.
  • Kurakado M. Possibility of high resolution detectors using superconducting tunnel junctions. Nucl Instrum Methods Phys Res. 1982;196:275–277.
  • Rando N, Peacock A, van Dordrecht A, et al. The properties of niobium superconducting tunneling junctions as X-ray detectors. Nucl Instrum Methods Phys Res Sect A. 1992;313:173–195.
  • Martin DDE, Verhoeve P, Oosterbroek T, et al. Accurate time-resolved optical photospectroscopy with superconducting tunnel junction arrays. Proc SPIE. 2006;6269:238–248.
  • Nahum M, Martinis JM. Ultrasensitive-hot-electron microbolometer. Appl Phys Lett. 1993;63:3075–3077.
  • Nahum M, Eiles TM, Martinis JM. Electronic microrefrigerator based on a normal-insulator-superconductor tunnel junction. Appl Phys Lett. 1994;65:3123–3125.
  • Kuzmin LS, Pankratov AL, Gordeeva AV, et al. Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high-performance cosmology missions. Commun Phys. 2019;2:104.
  • Brien TLR, Ade PAR, Barry PS, et al. A strained silicon cold electron bolometer using Schottky contacts. Appl Phys Lett. 2014;105:043509.
  • Morozov D, Bacchus I, Mauskopf P, et al. High-sensitivity terahertz detector using two-dimensional electron gas absorber and tunnel junction contacts as a thermometer. Proc SPIE. 2006;6275:559–567.
  • Friedrich S, Funk T, Drury O, et al. A multichannel superconducting soft x-ray spectrometer for high-resolution spectroscopy of dilute samples. Rev Sci Instrum. 2002;73:1629–1631.
  • Friedrich S, Drury OB, Cramer SP, et al. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications. Nucl Instrum Methods Phys Res Sect A. 2006;559:776–778.
  • Friedrich S. Cryogenic X-ray detectors for synchrotron science. J Synchrotron Radiat. 2006;13:159–171.
  • Heikkilä TT, Ojajärvi R, Maasilta IJ, et al. Thermoelectric radiation detector based on Superconductor-Ferromagnet systems. Phys Rev Appl. 2018;10(3):034053.
  • Geng Z, Helenius AP, Heikkilä TT, et al. Superconductor-ferromagnet tunnel junction thermoelectric bolometer and calorimeter with a SQUID readout. J Low Temp Phys. 2020;199:585–592.
  • Vischi F, Carrega M, Braggio A, et al. Electron cooling with graphene-insulator-superconductor tunnel junctions for applications in fast bolometry. Phys Rev Appl. 2020;13(5):054006.
  • Walsh ED, Jung W, Lee G-H, et al. Josephson junction infrared single-photon detector. Science. 2021;372:409–412.
  • Irwin KD, Hilton GC. Transition-edge sensors. In: C Enss, editor. Cryogenic particle detection. Berlin, Heidelberg: Springer; 2005. p. 63–150.
  • de Korte PAJ, Hoevers HFC, den Herder J-W, et al. TES x-ray calorimeter-array for imaging spectroscopy. Proc SPIE. 2003;4851:779–789.
  • Morozov D, Mauskopf PD, Ade P, et al. Ultrasensitive TES bolometers for space based FIR astronomy. IEEE Trans Appl Supercond. 2011;21:188–191.
  • Gerrits T, Calkins B, Tomlin N, et al. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime. Opt Express. 2012;20:23798–23810.
  • Di Giuseppe G, Atatüre M, Shaw MD, et al. Direct observation of photon pairs at a single output port of a beam-splitter interferometer. Phys Rev A. 2003;68(6):063817.
  • Christensen BG, McCusker KT, Altepeter JB, et al. Detection-loophole-free test of quantum nonlocality, and applications. Phys Rev Lett. 2013;111(13):130406.
  • Giustina M, Versteegh MAM, Wengerowsky S, et al. Significant-loophole-free test of Bell's theorem with entangled photons. Phys Rev Lett. 2015;115(25):250401.
  • Levine ZH, Glebov BL, Pintar AL, et al. Absolute calibration of a variable attenuator using few-photon pulses. Opt Express. 2015;23:16372–16382.
  • Arrazola JM, Bergholm V, Brádler K, et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature. 2021;591:54–60.
  • Audley MD, Holland WS, Duncan WD, et al. SCUBA-2: A large-format TES array for submillimetre astronomy. Nucl Instrum Methods Phys Res Sect A. 2004;520:479–482.
  • den Hartog R, Audley MD, Beyer J, et al. Low-noise readout of TES detectors with baseband feedback frequency domain multiplexing. J Low Temp Phys. 2012;167:652–657.
  • Kozorezov AG, Lambert C, Marsili F, et al. Quasiparticle recombination in hotspots in superconducting current-carrying nanowires. Phys Rev B. 2015;92(6):064504.
  • Vodolazov DY, Korneeva YP, Semenov AV, et al. Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field. Phys Rev B. 2015;92(10):104503.
  • Semenov AD. Superconducting nanostrip single-photon detectors some fundamental aspects in detection mechanism, technology and performance. Supercond Sci Technol. 2021;34:054002.
  • Tanner MG, Natarajan CM, Pottapenjara VK, et al. Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl Phys Lett. 2010;96:221109.
  • Il'in KS, Lindgren M, Currie M, et al. Picosecond hot-electron energy relaxation in NbN superconducting photodetectors. Appl Phys Lett. 2000;76:2752–2754.
  • Engel A, Aeschbacher A, Inderbitzin K, et al. Tantalum nitride superconducting single-photon detectors with low cut-off energy. Appl Phys Lett. 2012;100:062601.
  • Korneeva Y, Florya I, Vdovichev S, et al. Comparison of hot spot formation in NbN and MoN thin superconducting films after photon absorption. IEEE Trans Appl Supercond. 2017;27:1–4.
  • Annunziata AJ, Quaranta O, Santavicca DF, et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors. J Appl Phys. 2010;108:084507.
  • Baek B, Lita AE, Verma V, et al. Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850nm. Appl Phys Lett. 2011;98:251105.
  • Korneeva YP, Mikhailov MY, Pershin YP, et al. Superconducting single-photon detector made of MoSi film. Supercond Sci Technol. August 2014;27:095012.
  • Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency. Nat Photon. 2013;7:210–214.
  • Taylor GG, Morozov DV, Lennon CT, et al. Infrared single-photon sensitivity in atomic layer deposited superconducting nanowires. Appl Phys Lett. 2021;118:191106.
  • Shibata H, Akazaki T, Tokura Y. Fabrication of mgb2nanowire single-photon detector with meander structure. Appl Phys Express. February 2013;6:023101.
  • Ejrnaes M, Parlato L, Arpaia R, et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics. Supercond Sci Technol. 2017;30:12LT02.
  • Seifert P, Retamal JRD, Merino RL, et al. A high-T c van der waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. June 2021;8:035053.
  • Orchin GJ, De Fazio D, Di Bernardo A, et al. Niobium diselenide superconducting photodetectors. Appl Phys Lett. 2019;114:251103.
  • Verevkin A, Zhang J, Sobolewski R, et al. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl Phys Lett 2002;80:4687–4689.
  • Rosfjord KM, Yang JKW, Dauler EA, et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express. 2006;14:527–534.
  • Miki S, Yamashita T, Terai H, et al. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt Express. April 2013;21:10208–10214.
  • Zadeh IE, Los JWN, Gourgues RBM, et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photonics. 2017;2:111301.
  • Zhang W, You L, Li H, et al. Nbn superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci China Phys Mech Astron. 2017;60:120314.
  • Erotokritou K, Heath RM, Taylor GG, et al. Nano-optical photoresponse mapping of superconducting nanowires with enhanced near infrared absorption. Supercond Sci Technol. 2018;31:125012.
  • Heath RM, Tanner MG, Drysdale TD, et al. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors. Nano Lett. 2015;15:819–822.
  • Hu X, Dauler EA, Molnar RJ, et al. Superconducting nanowire single-photon detectors integrated with optical nano-antennae. Opt Express. January 2011;19:17–31.
  • Sprengers JP, Gaggero A, Sahin D, et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl Phys Lett. 2011;99:181110.
  • Pernice WHP, Schuck C, Minaeva O, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun. 2012;3:1325.
  • Najafi F, Mower J, Harris NC, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun. 2015;6:5873.
  • Akhlaghi MK, Schelew E, Young JF. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat Commun. 2015;6:8233.
  • Li J, Kirkwood RA, Baker LJ, et al. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt Express. June 2016;24:13931–13938.
  • Hadfield RH. Superfast photon counting. Nat Photonics. 2020;14:201–202.
  • McCaughan AN. Readout architectures for superconducting nanowire single photon detectors. Supercond Sci Technol. 2018;31:040501.
  • Allman MS, Verma VB, Stevens M, et al. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Appl Phys Lett. 2015;106:192601.
  • Allmaras JP, Wollman EE, Beyer AD, et al. Demonstration of a thermally coupled Row-column SNSPD imaging array. Nano Lett. 2020;20:2163–2168.
  • Terai H, Miki S, Yamashita T, et al. Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors. Appl Phys Lett. 2010;97:112510.
  • Ortlepp T, Hofherr M, Fritzsch L, et al. Demonstration of digital readout circuit for superconducting nanowire single photon detector. Opt Express. 2011;19:18593–18601.
  • Yabuno M, Miyajima S, Miki S, et al. Scalable implementation of a superconducting nanowire single-photon detector array with a superconducting digital signal processor. Opt Express. 2020;28:12047–12057.
  • Doerner S, Kuzmin A, Wuensch S, et al. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array. Appl Phys Lett. 2017;111:032603.
  • de Cea M, Wollman EE, Atabaki AH, et al. Photonic readout of superconducting nanowire single photon counting detectors. Sci Rep. 2020;10:9470.
  • Wollman EE, Verma VB, Lita AE, et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt Express. 2019;27:35279–35289.
  • Hadfield RH, Habif JL, Schlafer J, et al. Quantum key distribution at 1550 nm with twin superconducting single-photon detectors. Appl Phys Lett. 2006;89:241129.
  • Takesue H, Nam SW, Zhang Q, et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat Photonics. 2007;1:343–348.
  • Tang Y-L, Yin H-L, Chen S-J, et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. November 2014;113(19):190501.
  • Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution. Nat Commun. 2017;8:13984.
  • Boaron A, Boso G, Rusca D, et al. Secure quantum Key distribution over 421 km of optical fiber. Phys Rev Lett. 2018;121(19):190502.
  • Wengerowsky S, Joshi SK, Steinlechner F, et al. Entanglement distribution over a 96-km-long submarine optical fiber. Proc Natl Acad Sci USA. 2019;116:6684–6688.
  • Liu H, Jiang C, Zhu H-T, et al. Field test of twin-field quantum Key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. June 2021;126(25):250502.
  • De Greve K, Yu L, McMahon PL, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature. 2012;491:421–425.
  • De Greve K, McMahon PL, Yu L, et al. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair. Nat Commun. 2013;4:2228.
  • Yu L, Natarajan CM, Horikiri T, et al. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nat Commun. 2015;6:8955.
  • Lago-Rivera D, Grandi S, Rakonjac JV, et al. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature. 2021;594:37–40.
  • Boroson DM, Robinson BS, Murphy DV, et al. Overview and results of the lunar laser communication demonstration. Proc. SPIE. 2014;8971:213–223.
  • Biswas A, Srinivasan M, Piazzolla S, et al. Deep space optical communications. Proc SPIE. 2018;10524:242–252.
  • Messerschmitt DG, Lubin P, Morrison I. Challenges in Scientific data communication from low-mass interstellar probes. Astrophys J Suppl Ser. 2020;249:36.
  • O'Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics. 2009;3:687–695.
  • Wang J, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics. 2020;14:273–284.
  • Zhong H-S, Deng Y-H, Qin J, et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys Rev Lett. 2021;127(18):180502.
  • Shainline JM, Buckley SM, Mirin RP, et al. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Applied. March 2017;7(3):034013.
  • Gemmell NR, McCarthy A, Liu B, et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Opt Express. February 2013;21:5005–5013.
  • Hochberg Y, Charaev I, Nam S-W, et al. Detecting Sub-GeV dark matter with superconducting nanowires. Phys Rev Lett. 2019;123(15):151802.
  • Chiles J, Charaev I, Lasenby R, et al. First constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope. arXiv:2110.01582. 2021.
  • Schuck C, Pernice WHP, Ma X, et al. Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Appl Phys Lett. 2013;102:191104.
  • Overton G. “Ariane 6 launch program chooses ID Quantique single-photon-counting technology,” 17 December 2017. [Online]. Available: https://www.laserfocusworld.com/test-measurement/test-measurement/article/16569515/ariane-6-launch-program-chooses-id-quantique-singlephotoncounting-technology.
  • Tanner MG, Dyer SD, Baek B, et al. High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors. Appl Phys Lett. 2011;99:201110.
  • Dyer SD, Tanner MG, Baek B, et al. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors. Opt Express. 2012;20:3456–3466.
  • McCarthy A, Krichel NJ, Gemmell NR, et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt Express. 2013;21:8904–8915.
  • Taylor GG, McCarthy A, Korzh B, et al. Long-range depth imaging with 13ps temporal resolution using a superconducting nanowire singlephoton detector. Conference on Lasers and Electro-Optics. CLEO: Science and Innovations; 2020. SM2M. 6.
  • Taylor GG, Morozov D, Gemmell NR, et al. Photon counting LIDAR at 2.3µm wavelength with superconducting nanowires. Opt Express. December 2019;27:38147–38158.
  • Szypryt P, Meeker SR, Coiffard G, et al. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy. Opt Express. October 2017;25:25894–25909.
  • Sergeev AV, Mitin VV, Karasik BS. Ultrasensitive hot-electron kinetic-inductance detectors operating well below the superconducting transition. Appl. Phys. Lett. 2002;80:817–819.
  • Leduc HG, Bumble B, Day PK, et al. Titanium nitride films for ultrasensitive microresonator detectors. Appl. Phys. Lett. 2010;97:102509.
  • de Visser PJ, Baselmans JJA, Diener P, et al. Number fluctuations of sparse quasiparticles in a superconductor. Phys Rev Lett. 2011;106(16):167004.
  • Monfardini A, Swenson LJ, Bideaud A, et al. NIKA: A millimeter-wave kinetic inductance camera. Astron Astrophys. 2010;521:A29.
  • Zobrist N, Coiffard G, Bumble B, et al. Design and performance of hafnium optical and near-IR kinetic inductance detectors. Appl Phys Lett. 2019;115:213503.
  • de Visser PJ, de Rooij SAH, Murugesan V, et al. Phonon-Trapping-Enhanced energy resolution in superconducting single-photon detectors. Phys Rev Appl. 2021;16(3):034051.
  • Parrianen JDA, Papageorgiou A, Doyle S, et al. Modelling the performance of single-photon counting kinetic inductance detectors. J Low Temp Phys. 2018;193:113–119.
  • Arams F, Allen C, Peyton B, et al. Millimeter mixing and detection in bulk InSb. Proc IEEE. April 1966;54:612–624.
  • Phillips TG, Jefferts KB. A low temperature bolometer heterodyne receiver for millimeter wave astronomy. Rev Sci Instrum. August 1973;44:1009–1014.
  • Gershenzon EM. Millimeter and submillimeter range mier based on electronic heating of superconducting films in the resistive state. Sov Phys Supercond. 1990;3:1582–1597.
  • Il’in KS, Milostnaya II, Verevkin AA, et al. Ultimate quantum efficiency of a superconducting hot-electron photodetector. Appl Phys Lett. 1998;73:3938–3940.
  • Prober DE. Superconducting terahertz mixer using transition-edge microbolometer. Appl Phys Lett 1993;62:2119.
  • Karasik BS, McGrath WR, Wyss RA. Optimal choice of material for HEB superconducting mixers. Appl Superconduc IEEE Trans. 1999;9:4213–4216.
  • Golubev D, Kuzmin L. Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction. J Appl Phys. 2001;89:6464–6472.
  • Karasik BS, Pereverzev SV, Soibel A, et al. Energy-resolved detection of single infrared photons with λ = 8µm using a superconducting microbolometer. Appl Phys Lett. 2012;101:052601.
  • Martini F, Cibella S, Gaggero A, et al. Waveguide integrated hot electron bolometer for classical and quantum photonics. Opt Express. 2021;29:7956–7965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.