213
Views
0
CrossRef citations to date
0
Altmetric
Articles

A brief introduction to contemporary electrokinetics

ORCID Icon
Pages 92-104 | Received 16 Apr 2022, Accepted 27 Apr 2022, Published online: 26 May 2022

References

  • electrokinetics [Merriam-Webster.com Dictionary]; 2022. Accessed: 2022-04-24. Available from: https://www.merriam-webster.com/dictionary/electrokinetics.
  • Oesper RE, Speter M. The Faraday-Whewell correspondence concerning electro-chemical terms. Sci Mon. 1937;45(6):535–546.
  • Faraday M. In: James FAJL, editor. The correspondence of Michael Faraday. Vol. 2. Stevenage, United Kingdom: Institution of Engineering and Technology; 1993. p. 1832–1840.
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A. 1976;32(5):751–767.
  • Mantina M, Chamberlin AC, Valero R, et al. Consistent van der Waals radii for the whole main group. J Phys Chem A. 2009;113(19):5806–5812.
  • Walden P. Über die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze. Bull Acad Imper Sci. 1914;8:405–422.
  • Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99(8):2071–2084.
  • Welton T. Ionic liquids: a brief history. Biophys Rev. 2018;10(3):691–706.
  • Crookes W. On radiant matter: a lecture delivered to the British association for the advancement of science, at Sheffield, Friday, August 22, 1879. Creative Media Partners, LLC; 2018. Available from: https://books.google.co.uk/books?id=l-_HvQEACAAJ.
  • Langmuir I. Oscillations in ionized gases. Proc Natl Acad Sci USA. 1928;14(8):627–637. Available from: https://www.pnas.org/doi/abs/https://doi.org/10.1073/pnas.14.8.627.
  • Pendry JB. Negative refraction. Contemp Phys. 2004;45(3):191–202.
  • Brooks BR, Brooks III CL, Mackerell Jr. AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–1614.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Vol. 1. San Diego: Elsevier; 2001.
  • Jung J, Nishima W, Daniels M, et al. Scaling molecular dynamics beyond 100,000 processor cores for large-scale biophysical simulations. J Comput Chem. 2019;40(21):1919–1930.
  • Atkins P, Atkins PW, de Paula J. Atkins' physical chemistry. Oxford: Oxford University Press; 2014.
  • Driesner T, Seward T, Tironi I. Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions. Geochim Cosmochim Acta. 1998;62(18):3095–3107.
  • Zuk PJ, Cichocki B, Szymczak P. GRPY: an accurate bead method for calculation of hydrodynamic properties of rigid biomacromolecules. Biophys J. 2018;115(5):782–800.
  • von Grotthuß T. Mémoire sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. 1805.
  • De Groot SR, Mazur P. Non-equilibrium thermodynamics. New York: Dover Publications; 1984.
  • Bellan PM. Fundamentals of plasma physics. Cambridge: Cambridge University Press; 2008.
  • Carrillo-Tripp M, Saint-Martin H, Ortega-Blake I. A comparative study of the hydration of Na+ and K+ with refined polarizable model potentials. J Chem Phys. 2003;118(15):7062–7073.
  • Barabash ML, Gibby WA, Guardiani C, et al. Origin and control of ionic hydration patterns in nanopores. Commun Mater. 2021;2(1):1–9.
  • Carnevale V, Delemotte L, Howard RJ. Molecular dynamics simulations of ion channels. Trends Biochem Sci. 2021;46(7):621–622.
  • Lee K, Park KB, Kim HJ, et al. Recent progress in solid-state nanopores. Adv Mater. 2018;30(42):1704680.
  • Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53.
  • Adiga SP, Jin C, Curtiss LA, et al. Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev. 2009;1(5):568–581.
  • Howorka S. Building membrane nanopores. Nat Nanotechol. 2017;12(7):619–630.
  • Lepoitevin M, Ma T, Bechelany M, et al. Functionalization of single solid state nanopores to mimic biological ion channels: a review. Adv Colloid Interface Sci. 2017;250:195–213.
  • Gibby WA, Barabash ML, Guardiani C, et al. Physics of selective conduction and point mutation in biological ion channels. Phys Rev Lett. 2021;126(21):218102.
  • Maffeo C, Bhattacharya S, Yoo J, et al. Modeling and simulation of ion channels. Chem Rev. 2012;112(12):6250–6284.
  • Luchinsky DG, McClintock PVE. Introduction to the physics of ionic conduction in narrow biological and artificial channels. Entropy. 2021;23(6):644.
  • Ackerman MJ, Clapham DE. Ion channels–basic science and clinical disease. New Engl J Med. 1997;336(22):1575–1586.
  • Xiao K, Jiang L, Antonietti M. Ion transport in nanofluidic devices for energy harvesting. Joule. 2019;3(10):2364–2380.
  • Keener J, Sneyd J. Mathematical Physiology 1: Cellular Physiology. New York: Springer; 2009.
  • Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Phsiol Rev. 2014;94(2):519–608.
  • Goldford JE, Hartman H, Smith TF, et al. Remnants of an ancient metabolism without phosphate. Cell. 2017;168(6):1126–1134.
  • Gupta R, Laxman S. Cycles, sources, and sinks: conceptualizing how phosphate balance modulates carbon flux using yeast metabolic networks. Elife. 2021;10:e63341.
  • Bonora M, Patergnani S, Rimessi A, et al. ATP synthesis and storage. Purinergic Signal. 2012;8(3):343–357.
  • Kondrat S, Vella D, Goriely A, et al. Dynamics of ion transport in ionic liquids. Phys Rev Lett. 2015;115(10):106101.
  • Boyer PD. The ATP synthase–a splendid molecular machine. Annu Rev Biochem. 1997;66(1):717–749.
  • Junge W, Nelson N. ATP synthase. Annu Rev Biochem. 2015;84:631–657.
  • Kubo S, Niina T, Takada S. Molecular dynamics simulation of proton-transfer coupled rotations in ATP synthase FO motor. Sci Rep. 2020;10(1):1–16.
  • Stewart AG, Laming EM, Sobti M, et al. Rotary ATPases–dynamic molecular machines. Curr Opin Struct Biol. 2014;25:40–48.
  • Kühlbrandt W, Davies KM. Rotary ATPases: a new twist to an ancient machine. Trends Biochem Sci. 2016;41(1):106–116.
  • Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Phsiol Rev. 1999;79(4):1127–1155.
  • Hille B. Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates; 2001.
  • Marbán E. Cardiac channelopathies. Nature. 2002;415(6868):213–218.
  • Wacquier B, Combettes L, Dupont G. Dual dynamics of mitochondrial permeability transition pore opening. Sci Rep. 2020;10(1):1–10.
  • Smith G, Sansom M. Dynamic properties of na+ ions in models of ion channels: a molecular dynamics study. Biophys J. 1998;75(6):2767–2782.
  • Paggio A, Checchetto V, Campo A, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572(7771):609–613.
  • Wolynes PG. Dynamics of electrolyte solutions. Annu Rev Phys Chem. 1980;31(1):345–376.
  • Wennerström H, Estrada EV, Danielsson J, et al. Colloidal stability of the living cell. Proc Natl Acad Sci USA. 2020;117(19):10113–10121.
  • Roux B, Allen T, Berneche S, et al. Theoretical and computational models of biological ion channels. Q Rev Biophys. 2004;37(1):15–103.
  • Simon P, Gogotsi Y. Materials for electrochemical capacitors. In: Nanoscience and technology: a collection of reviews from nature journals. Peter Rodgers: World Scientific; 2010. p. 320–329.
  • Muzaffar A, Ahamed MB, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev. 2019;101:123–145.
  • Pipitone E, Vitale G. A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements-part 1: system analysis and modelling. J Power Sources. 2020;448:227368.
  • Anson FC, Martin RF, Yarnitzky C. Creation of nonequilibrium diffuse double layers and studies of their relaxation. J Phys Chem. 1969;73(6):1835–1842.
  • Bazant MZ, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems. Phys Rev E. 2004;70(2):021506.
  • De Levie R. On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta. 1963;8(10):751–780.
  • Gupta A, Zuk PJ, Stone HA. Charging dynamics of overlapping double layers in a cylindrical nanopore. Phys Rev Lett. 2020;125(7):076001.
  • Henrique F, Zuk PJ, Gupta A. Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size. Soft Matter. 2022;18(1):198–213.
  • von Smoluchowski M. Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs. Bull Akad Sci Cracovie. 1903;8:182–200.
  • Newman J, Balsara NP. Electrochemical systems. Hoboken: John Wiley & Sons; 2021.
  • Riad A, Khorshidi B, Sadrzadeh M. Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel. Sci Rep. 2020;10(1):1–14.
  • Henry D. The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc R Soc Lond Ser A. 1931;133(821):106–129.
  • Nassrullah H, Anis SF, Hashaikeh R, et al. Energy for desalination: a state-of-the-art review. Desalination. 2020;491:114569.
  • Mani A, Bazant MZ. Deionization shocks in microstructures. Phys Rev E. 2011;84(6):061504.
  • Bazant MZ, Dydek EV, Deng D, et al. Method and apparatus for desalination and purification. 2014. US Patent 8, 801, 910.
  • Tian H, Alkhadra MA, Bazant MZ. Theory of shock electrodialysis I: water dissociation and electrosmotic vortices. J Colloid Interface Sci. 2021;589:605–615.
  • Tian H, Alkhadra MA, Bazant MZ. Theory of shock electrodialysis II: mechanisms of selective ion removal. J Colloid Interface Sci. 2021;589:616–621.
  • Alkhadra MA, Gao T, Conforti KM, et al. Small-scale desalination of seawater by shock electrodialysis. Desalination. 2020;476:114219.
  • Amrei SH, Bukosky SC, Rader SP, et al. Oscillating electric fields in liquids create a long-range steady field. Phys Rev Lett. 2018;121(18):185504.
  • Bandopadhyay A, Shaik VA, Chakraborty S. Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances. Phys Rev E. 2015;91(4):042307.
  • Stout RF, Khair AS. Moderately nonlinear diffuse-charge dynamics under an AC voltage. Phys Rev E. 2015;92(3):032305.
  • Perez-Martinez CS, Perkin S. Surface forces generated by the action of electric fields across liquid films. Soft Matter. 2019;15(21):4255–4265.
  • Richter Ł, Żuk PJ, Szymczak P, et al. Ions in an AC electric field: strong long-range repulsion between oppositely charged surfaces. Phys Rev Lett. 2020;125(5):056001.
  • Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys Rev E. 2007;75(2):021503.
  • Lu B, Zhou Y. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J. 2011;100(10):2475–2485.
  • Liu JL, Eisenberg B. Molecular mean-field theory of ionic solutions: a Poisson-Nernst-Planck-Bikerman model. Entropy. 2020;22(5):550.
  • Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115(13):6357–6426.
  • Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem Rev. 2014;114(5):2978–3036.
  • Bazant MZ, Storey BD, Kornyshev AA. Double layer in ionic liquids: overscreening versus crowding. Phys Rev Lett. 2011;106(4):046102.
  • de Souza JP, Goodwin ZA, McEldrew M, et al. Interfacial layering in the electric double layer of ionic liquids. Phys Rev Lett. 2020;125(11):116001.
  • Wang C, Bao J, Pan W, et al. Modeling electrokinetics in ionic liquids. Electrophoresis. 2017;38(13–14):1693–1705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.