574
Views
0
CrossRef citations to date
0
Altmetric
Articles

Symmetry aspects of chiral superconductors

ORCID Icon
Pages 71-86 | Received 03 Oct 2022, Accepted 17 Oct 2022, Published online: 17 Nov 2022

References

  • Onnes HK, Keesom WH. Commun. Phys. Lab. Univ. Leiden. Suppl. 29, 1911.
  • Meissner W, Ochsenfeld R. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften. 1933;21(44):787–788.
  • London F, London H, Lindemann FA. The electromagnetic equations of the supraconductor. Proc R Soc Lond A Math Phys Sci. 1935;149(866):71–88.
  • Landau LD, Ter-Haar D. Collected papers of L.D. Landau. Oxford: Pergamon; 1965.
  • Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108(5):1175.
  • Cooper LN. Bound electron pairs in a degenerate fermi gas. Phys Rev. 1956 Nov;104:1189–1190.
  • White BD, Thompson JD, Maple MB. Unconventional superconductivity in heavy-fermion compounds. Phys C Supercond Appl. 2015;514:246–278.
  • Keimer B, Kivelson SA, Norman MR, et al. From quantum matter to high-temperature superconductivity in copper oxides. Nature. 2015;518(7538):179–186.
  • Stewart GR. Superconductivity in iron compounds. Rev Mod Phys. 2011 Dec;83:1589–1652.
  • Wysokiński KI. Time reversal symmetry breaking superconductors: Sr 2RuO 4 and beyond. Condens Matter. 2019;4(2):47.
  • Ghosh SK, Smidman M, Shang T, et al. Recent progress on superconductors with time-reversal symmetry breaking. J Phys Condens Matter. 2020 Oct;33(3):33001.
  • Kallin C, Berlinsky J. Chiral superconductors. Rep Prog Phys. 2016 May;79(5):054502.
  • Luke GM, Keren A, Le LP, et al. Muon spin relaxation in UPt 3. Phys Rev Lett. 1993 Aug;71:1466–1469.
  • Luke GM, Fudamoto Y, Kojima KM, et al. Time-reversal symmetry-breaking superconductivity in Sr 2RuO 4. Nature. 1998;394(6693):558–561.
  • Biswas PK, Ghosh SK, Zhao JZ, et al. Chiral singlet superconductivity in the weakly correlated metal LaPt 3P. Nat Commun. 2021;12(1):2504.
  • Biswas PK, Luetkens H, Neupert T, et al. Evidence for superconductivity with broken time-reversal symmetry in locally noncentrosymmetric SrPtAs. Phys Rev B. 2013 May;87:180503.
  • Blundell SJ. Spin-polarized muons in condensed matter physics. Contemp Phys. 1999;40(3):175–192.
  • Xia J, Maeno Y, Beyersdorf PT, et al. High resolution polar kerr effect measurements of Sr 2RuO 4: evidence for broken time-reversal symmetry in the superconducting state. Phys Rev Lett. 2006 Oct;97:167002.
  • Schemm ER, Gannon WJ, Wishne CM, et al. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt 3. Science. 2014;345(6193):190–193.
  • Schemm ER, Baumbach RE, Tobash PH, et al. Evidence for broken time-reversal symmetry in the superconducting phase of URu 2Si 2. Phys Rev B. 2015 Apr;91:140506.
  • Kapitulnik A, Xia J, Schemm E, et al. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J Phys. 2009 May;11(5):55060.
  • Sigrist M, Ueda K. Phenomenological theory of unconventional superconductivity. Rev Mod Phys. 1991 Apr;63:239–311.
  • Jang J, Ferguson DG, Vakaryuk V, et al. Observation of half-height magnetization steps in Sr 2RuO 4. Science. 2011;331(6014):186–188.
  • Benhabib S, Lupien C, Paul I, et al. Ultrasound evidence for a two-component superconducting order parameter in Sr 2RuO 4. Nat Phys. 2021;17(2):194–198.
  • Ghosh S, Shekhter A, Jerzembeck F, et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr 2RuO 4. Nat Phys. 2021;17(2):199–204.
  • Grinenko V, Ghosh S, Sarkar R, et al. Split superconducting and time-reversal symmetry-breaking transitions in Sr 2RuO 4 under stress. Nat Phys. 2021;17(6):748–754.
  • Maeno Y, Hashimoto H, Yoshida K, et al. Superconductivity in a layered perovskite without copper. Nature. 1994;372(6506):532–534.
  • Mackenzie AP, Scaffidi T, Hicks CW, et al. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr 2RuO 4. npj Quant Mater. 2017;2(1):40.
  • Armitage NP. Superconductivity mystery turns 25. Nature. 2019;576:386–387.
  • Schnyder AP, Ryu S, Furusaki A, et al. Classification of topological insulators and superconductors in three spatial dimensions. Phys Rev B. 2008 Nov;78:195125.
  • Volovik GE. Fermion zero modes on vortices in chiral superconductors. J Exp Theor Phys Lett. 1999;70(9):609–614.
  • Ivanov DA. Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys Rev Lett. 2001;86:268–271.
  • Beenakker CWJ. Search for Majorana Fermions in superconductors. Ann Rev Condens Matter Phys. 2013;4(1):113–136.
  • Sarma SD, Freedman M, Nayak C. Majorana zero modes and topological quantum computation. npj Quant Inform. 2015;1(1):15001.
  • Pavarini E, Koch E, editors. Topology, entanglement, and strong correlations modeling and simulation. Vol. 10. Verlag des Forschungszentrum Jülich; 2020. Available from: https://juser.fz-juelich.de/record/884084
  • Leggett AJ. A theoretical description of the new phases of liquid 3He. Rev Mod Phys. 1975 Apr;47:331–414.
  • Wheatley JC. Experimental properties of superfluid 3He. Rev Mod Phys. 1975 Apr;47:415–470.
  • Volovik GE. The universe in a helium droplet. Oxford: Clarendon Press; 2003.
  • Halperin WP, Parpia JM, Sauls JA. Superfluid helium-3 in confined quarters. Phys Today. 2018;71(11):30–36.
  • Joynt R, Taillefer L. The superconducting phases of UPt 3. Rev Mod Phys. 2002 Mar;74:235–294.
  • Strand JD, Van Harlingen DJ, Kycia JB, et al. Evidence for complex superconducting order parameter symmetry in the low-temperature phase of UPt 3 from josephson interferometry. Phys Rev Lett. 2009 Nov;103:197002.
  • Dalmas de Réotier P, Huxley A, Yaouanc A, et al. Absence of zero field muon spin relaxation induced by superconductivity in the B phase of UPt 3. Phys Lett A. 1995;205(2):239–243.
  • Avers KE, Gannon WJ, Kuhn SJ, et al. Broken time-reversal symmetry in the topological superconductor UPt 3. Nat Phys. 2020;16(5):531–535.
  • Mydosh JA, Oppeneer PM, Riseborough PS. Hidden order and beyond: an experimental–theoretical overview of the multifaceted behavior of URu 2Si 2. J Phys Condens Matter. 2020 Jan;32(14):143002.
  • Shunichiro K, Yusei S, Toshiro S, et al. Evidence for Chiral d-Wave superconductivity in URu 2Si 2 from the field-angle variation of its specific heat. J Phys Soc Japan. 2016;85(3):33704.
  • Ran S, Liu I-L, Eo YS, et al. Extreme magnetic field-boosted superconductivity. Nat Phys. 2019;15(12):1250–1254.
  • Ran S, Saha SR, Liu I-L, et al. Expansion of the high field-boosted superconductivity in UTe 2 under pressure. npj Quant Mater. 2021;6(1):75.
  • Jiao L, Howard S, Ran S, et al. Chiral superconductivity in heavy-fermion metal UTe 2. Nature. 2020;579(7800):523–527.
  • Rice TM, Sigrist M. Sr 2RuO 4: an electronic analogue of 3He?. J Phys Condens Matter. 1995 Nov;7(47):L643–L648.
  • Grinenko V, Das D, Gupta R, et al. Unsplit superconducting and time reversal symmetry breaking transitions in Sr 2RuO 4 under hydrostatic pressure and disorder. Nat Commun. 2021;12(1):3920.
  • Gingras O, Nourafkan R, Tremblay A-MS, et al. Superconducting symmetries of Sr 2RuO 4 from first-principles electronic structure. Phys Rev Lett. 2019 Nov;123:217005.
  • Suh HG, Menke H, Brydon PMR, et al. Stabilizing even-parity chiral superconductivity in Sr 2RuO 4. Phys Rev Res. 2020 Jul;2:032023.
  • Clepkens J, Lindquist AW, Liu X, et al. Higher angular momentum pairings in interorbital shadowed-triplet superconductors: application to Sr 2RuO 4. Phys Rev B. 2021 Sep;104:104512.
  • Fischer MH, Neupert T, Platt C, et al. Chiral d-wave superconductivity in SrPtAs. Phys Rev B. 2014 Jan;89:020509.
  • Ribak A, Majlin Skiff R, Mograbi M, et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS 2. Sci Adv. 2020;6(13):eaax9480.
  • Pathak S, Shenoy VB, Baskaran G. Possible high-temperature superconducting state with a d + id pairing symmetry in doped graphene. Phys Rev B. 2010 Feb;81:085431.
  • Nandkishore R, Levitov LS, Chubukov AV. Chiral superconductivity from repulsive interactions in doped graphene. Nat Phys. 2012;8(2):158–163.
  • Black-Schaffer AM, Honerkamp C. Chiral d+id-wave superconductivity in doped graphene. J Phys Condens Matter. 2014 Sep;26(42):423201.
  • Can O, Tummuru T, Day RP, et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat Phys. 2021 Jan;17(4):519–524.
  • Tummuru TR, Can O, Franz M. Chiral p-wave superconductivity in a twisted array of proximitized quantum wires. Phys Rev B. 2021;103:L100501.
  • Momma K, Izumi F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011 Dec;44(6):1272–1276.
  • Georgi H. Lie algebras in particle physics: from isospin to unified theories. Colorado: Westview Press; 1999.
  • Hamermesh M. Group theory and its application to physical problems. Reading (MA): Addison-Wesley; 1962.
  • Bradley CJ, Cracknell AP. The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford: Claredon Press; 1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.