257
Views
1
CrossRef citations to date
0
Altmetric
Articles

Quantum electronics for fundamental physics

ORCID Icon
Pages 116-137 | Received 08 Dec 2022, Accepted 25 Jan 2023, Published online: 03 Mar 2023

References

  • Abazajian K, Addison G, Adshead P, et al. CMB-S4 science case reference design and project plan; 2019. arXiv:1907.04473.
  • Xu Z, Adachi S, Ade P, et al. The simons observatory: the large aperture telescope (LAT); 2021. arXiv:2104.09511.
  • Antypas D, Banerjee A, Bartram C, et al. New horizons: scalar and vector ultralight dark matter. Proceedings of the US Community Study on the Future of Particle Physics (Snowmass); 2021. arXiv:2203.14915.
  • Sikivie P. Experimental tests of the invisible axions. Phys Rev Lett. 1983;51:1415–1417.
  • Esfahani AA, Böser S, Buzinsky N, et al. The project 8 neutrino mass experiment; 2022. arXiv:2203.07349.
  • Asner DM, Bradley RF, De Viveiros L, et al. Single-Electron detection and spectroscopy via relativistic cyclotron radiation. Phys Rev Lett. 2015;114:162501–162505.
  • Reed IS. On a moment theorem for complex gaussian processes. IEEE Trans Inf Theory. 1962;8:194–195.
  • Isserlis L. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika. 1918;12:134–139.
  • Morse PM, Feshbach H. Methods of theoretical physics. New York: McGraw-Hill Inc; 1953. p. 65–73.
  • Withington S, Saklatavala G. Characterizing the behaviour of partially coherent detectors through spatio-temporal modes. J Opt A Pure Appl Opt. 2007;9:626–633.
  • Saklatvala G, Withington S, Hobson MP. Coupled-mode theory for infrared and submillimeter wave detectors. J Opt Soc Am A. 2007;24:764–775.
  • Kubo R. Statistical-mechanical theory of irreversible processes I. J Phys Soc Japan. 1957;12:570–586.
  • Zubarev DN. Double-time Green functions in statistical physics. Sov Phys Usp. 1960;3:320–345.
  • Belzig W, Wilhelm FK, Bruder C, et al. Qusiclassical Green's function approach to mesoscopic superconductivity. Superlattices Microstruct. 1999;25:1251–1288.
  • Withington S, Thomas CN. Optical theory of partially coherent thin-film energy absorbing structures for power detectors and imaging arrays. J Opt Soc Am A. 2009;26:1382–1392.
  • Callen HB, Welton TA. Irreversibility and generalized noise. Phys Rev. 1951;83:34–40.
  • Withington S, Thomas CN, Goldie DJ. Probing quantum correlation functions through energy-absorption interferometry. Phys Rev A. 2017;96:Article ID 022131.
  • Tihon D, Withington S, Bailly E, et al. General relation between spatial coherence and absorption. Opt Express. 2021;29:425–439.
  • Haus HA, Atkinson WR, Branch GM, et al. Representation of noise in linear twoports. IRE Subcommittee 7.9 on Noise Proc IRE; 1960. 48:69–74.
  • Kurokawa K. An introduction to the theory of microwave circuits. New York: Academic Press; 1969. p. 299–310.
  • Kurokawa K. An introduction to the theory of microwave circuits. New York: Academic Press; 1969. p. 289–299.
  • Mason SJ. Feedback theory – further properties of signal flow graphs. Proc IRE. 1956;44:920–926.
  • Yurke B, Denker JS. Quantum network behaviour. Phys Rev A. 1984;29:1419–1437.
  • Caves CM. Quantum limits on noise in linear amplifiers. Phys Rev D. 1982;26:1817–1839.
  • Clerk AA, Devoret MH, Girvin SM, et al. Introduction to quantum noise, measurement, and amplification. Rev Mod Phys. 2010;82:1155–1208.
  • Thomas CN, Withington S, Sun Z, et al. Nonlinear effects in superconducting thin film microwave resonators. New J Phys. 2020;22:Article ID 073028.
  • Fagaly RL. Superconducting quantum interference device instruments and applications. Rev Sci Instrum. 2006;77:Article ID 101101.
  • Esposito M, Ranadive A, Planat L, et al. Perspective on traveling wave microwave parametric amplifiers; 2021. arXiv:2107.13033.
  • Thomas CN, Withington S, Zhao S. Effects of reactive: dissipative and rate-limited nonlinearity on the behaviour of superconducting parametric amplifiers; 2022. arXiv:2206.10512.
  • Tucker JR. Quantum limited detection in tunnel junction mixers. IEEE J Quantum Electron. 1979;QE-15:1234–1258.
  • Tucker JR, Feldman MJ. Quantum detection at millimeter wavelengths. Rev Mod Phys. 1985;57:1055–1113.
  • Zmuidzinas J. Superconducting microresonators: physics and applications. Ann Rev Condens Matter Phys. 2012;3:169–214.
  • Kuzmin LS, Pankratov AL, Gordeeva AV, et al. Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for highperformance cosmology missions. Commun Phys. 2019;2:1038.
  • Morozov DV, Casaburi A, Hadfield RH. Superconducting photon detectors. Contemp Phys. 2022;62:69–91.
  • Krantz P, Kjaergaard M, Yan F, et al. A quantum engineer's guide to superconducting qubits. Appl Phys Rev. 2019;6:Article ID 021318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.