706
Views
8
CrossRef citations to date
0
Altmetric
Articles

The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles

, , , &
Pages 322-329 | Received 26 Oct 2021, Accepted 17 May 2022, Published online: 01 Jun 2022

References

  • Arbejdstilsynet. 2017. “Baggrundsnotat om snuble ulykker.” https://at.dk/arbejdsmiljoeproblemer/arbejdsulykker/typiske-ulykker/snubleulykker/
  • Baker, C. G. J. 2013. Handbook of Food Factory Design. New York: Springer. doi:10.1007/978-1-4614-7450-0.
  • Beschorner, K., M. Lovell, C. F. Higgs, M. S. Redfern, K. Beschorner, M. Lovell, C. Fred Higgs Iii, M. S. Redfern, and C. Fred Higgs Iii. 2009. “Modeling Mixed-Lubrication of a Shoe-Floor Interface Applied to a Pin-on-Disk Apparatus.” Tribology Transactions 52 (4): 560–568. doi:10.1080/10402000902825705.
  • Beschorner, K. E., A. Iraqi, M. S. Redfern, R. Cham, and Y. Li. 2019. “Predicting Slips Based on the STM 603 Whole-Footwear Tribometer under Different Coefficient of Friction Testing Conditions.” Ergonomics 62 (5): 668–681. doi:10.1080/00140139.2019.1567828.
  • Blanchette, M. G., and C. M. Powers. 2015. “Slip Prediction Accuracy and Bias of the SATRA STM 603 Whole Shoe Tester.” Journal of Testing and Evaluation 43 (3): 20130308. doi:10.1520/JTE20130308.
  • Chang, W.-R., R. Grönqvist, S. Leclercq, R. Myung, L. Makkonen, L. Strandberg, R. J. Brungraber, U. Mattke, and S. C. Thorpe. 2001. “The Role of Friction in the Measurement of Slipperiness, Part 1: Friction Mechanisms and Definition of Test Conditions the Role of Friction in the Measurement of Slipperiness, Part 1: Friction Mechanisms and Definition of Test Conditions.” Ergonomics 44 (13): 1217–1232. doi:10.1080/00140130110085574.
  • Chang, W. R., I. J. Kim, D. P. Manning, and Y. Bunterngchit. 2001. “The Role of Surface Roughness in the Measurement of Slipperiness.” Ergonomics 44 (13): 1200–1216. doi:10.1080/00140130110085565.
  • Danish Standards. 2019. Personal Protective Equipment – Footwear – Test Method for Slip Resistance (ISO 13287:2019).
  • Gao, C., and J. Abeysekera. 2004. “A Systems Perspective of Slip and Fall Accidents on Icy and Snowy Surfaces.” Ergonomics 47 (5): 573–598. doi:10.1080/00140130410081658718.
  • Gauvin, C. D. Pearsall, M. Damavandi, Y. Michaud-Paquette, B. Farbos, and D. Imbeau. 2015. Risk Factors for Slip Accidents among Police Officers and School Crossing Guards. Montréal, Québec: IRSST.
  • GP Association. 1963. Physical Properties of Glycerol and Its Solutions. New York: Glycerine Producers' Association.
  • Grönqvist, R. 1995. “Mechanisms of Friction and Assessment of Slip Resistance of New and Used Footwear Soles on Contaminated Floors.” Ergonomics 38 (2): 224–241. doi:10.1080/00140139508925100.
  • Grönqvist, R., W. Chang, T. K. Courtney, T. B. Leamon, M. S. Redfern, T. K, T. B, and M. S. 2001. “Measurement of Slipperiness: Fundamental Concepts and Definitions.” Ergonomics 44 (13): 1102–1117. doi:10.1080/0014013011008552.
  • Hemler, S. L., E. M. Pliner, M. S. Redfern, J. M. Haight, and K. E. Beschorner. 2022. “Effects of Natural Shoe Wear on Traction Performance: A Longitudinal Study.” Footwear Science 14 (1): 1–12. doi:10.1080/19424280.2021.1994022.
  • Hunwin, G., S. Thorpe, and K. Hallas. 2010. “Improvements to the EN Slip Resistance Test for Footwear.” Contemporary Ergonomics and Human Factors 2010 Proceeding, 471–479.
  • Iraqi, A., R. Cham, M. S. Redfern, and K. E. Beschorner. 2018. “Coefficient of Friction Testing Parameters Influence the Prediction of Human Slips.” Applied Ergonomics 70: 118–126. doi:10.1016/j.apergo.2018.02.017.
  • Iraqi, A., N. S. Vidic, M. S. Redfern, and K. E. Beschorner. 2020. “Prediction of Coefficient of Friction Based on Footwear Outsole Features.” Applied Ergonomics 82: 102963. doi:10.1016/j.apergo.2019.102963.
  • Jakobsen, L., F. G. Lysdal, T. Bagehorn, U. G. Kersting, and I. M. Sivebaek. 2022. “Evaluation of an Actuated Force Plate-Based Robotic Test Setup to Assess the Slip Resistance of Footwear.” International Journal of Industrial Ergonomics 88: 103253. doi:10.1016/j.ergon.2021.103253.
  • Jakobsen, L., F. G. Lysdal, and I. M. Sivebaek. 2021. “Dynamic Mechanical Analysis as a Predictor for Slip Resistance and Traction in Footwear.” Footwear Science 13 (sup1): S57–S58. doi:10.1080/19424280.2021.1917680.
  • Jones, T., A. Iraqi, and K. Beschorner. 2018. “Performance Testing of Work Shoes Labeled as Slip Resistant.” Applied Ergonomics 68: 304–312. doi:10.1016/j.apergo.2017.12.008.
  • Kim, I. J. 2016. “Identifying Shoe Wear Mechanisms and Associated Tribological Characteristics: Importance for Slip Resistance Evaluation.” Wear 360–361: 77–86. doi:10.1016/j.wear.2016.04.020.
  • Kim, I.-J., H. Hsiao, and P. Simeonov. 2013. “Functional Levels of Floor Surface Roughness for the Prevention of Slips and Falls: Clean-and-Dry and Soapsuds-Covered Wet Surfaces.” Applied Ergonomics 44 (1): 58–64. doi:10.1016/j.apergo.2012.04.010.
  • Li, K. W., and C. J. Chen. 2004. “The Effect of Shoe Soling Tread Groove Width on the Coefficient of Friction with Different Sole Materials, Floors, and Contaminants.” Applied Ergonomics 35 (6): 499–507. doi:10.1016/j.apergo.2004.06.010.
  • Manning, D. P., and C. Jones. 2001. “The Effect of Roughness, Foor Polish, Water, Oil and Ice on Underfoot Friction: current Safety Footwear Solings Are Less Slip Resistant than Microcellular Polyurethane.” Applied Ergonomics 32 (2): 185–196. doi:10.1016/S0003-6870(00)00055-7.
  • Menard, K, and N. Menard. 2020. Dynamic Mechanical Analysis. 3rd ed. Boca Raton: CRC Press. doi:10.1007/978-3-540-29805-2_1224.
  • Moghaddam, S. R. M., A. Acharya, M. S. Redfern, and K. E. Beschorner. 2018. “Predictive Multiscale Computational Model of Shoe-Floor Coefficient of Friction.” Journal of Biomechanics 66: 145–152. doi:10.1016/j.jbiomech.2017.11.009.
  • Moriyasu, K., T. Nishiwaki, K. Shibata, T. Yamaguchi, and K. Hokkirigawa. 2019. “Friction Control of a Resin Foam/Rubber Laminated Block Material.” Tribology International 136: 548–555. doi:10.1016/j.triboint.2019.04.024.
  • Persson, B. N. J. 2001. “Theory of Rubber Friction and Contact Mechanics.” Journal of Chemical Physics 115: 3840. doi:10.1063/1.1388626.
  • Persson, B. N. J., and A. I. Volokitin. 2006. “Rubber Friction on Smooth Surfaces.” The European Physical Journal E 21 (1): 69–80. doi:10.1140/epje/i2006-10045-9.
  • Sato, S., T. Yamaguchi, K. Shibata, T. Nishi, K. Moriyasu, K. Harano, and K. Hokkirigawa. 2020. “Dry Sliding Friction and Wear Behavior of Thermoplastic Polyurethane against Abrasive Paper.” Biotribology 23: 100130. doi:10.1016/j.biotri.2020.100130.
  • Strandberg, L. 1983. “On Accident Analysis and Slip-Resistance Measurement.” Ergonomics 26 (1): 11–32. doi:10.1080/00140138308963309.
  • Strobel, C. M., P. L. Menezes, M. R. Lovell, and K. E. Beschorner. 2012. “Analysis of the Contribution of Adhesion and Hysteresis to Shoe-Floor Lubricated Friction in the Boundary Lubrication Regime.” Tribology Letters 47 (3): 341–347. doi:10.1007/s11249-012-9989-5.
  • Tisserand, M. 1985. “Progress in the Prevention of Falls Caused by Slipping.” Ergonomics 28 (7): 1027–1042. doi:10.1080/00140138508963225.
  • U.S. Department of Labor-Bureau of Labor Statistics. 2019. “TABLE R4. Number of Nonfatal Occupational Injuries and Illnesses Involving Days Away from Work by Industry and Selected Events or Exposures Leading to Injury or Illness, Vol. 2019.” https://www.bls.gov/iif/oshwc/osh/case/cd_r4_2019.htm
  • van Doornik, J., and T. Sinkjaer. 2007. “Robotic Platform for Human Gait Analysis.” IEEE Transactions on Bio-Medical Engineering 54 (9): 1696–1702. doi:10.1109/TBME.2007.894949.
  • Walter, P. J., C. M. Tushak, S. L. Hemler, and K. E. Beschorner. 2021. “Effect of Tread Design and Hardness on Interfacial Fluid Force and Friction in Artificially Worn Shoes.” Footwear Science 13 (3): 245–254. doi:10.1080/19424280.2021.1950214.
  • Yamaguchi, T., Y. Katsurashima, and K. Hokkirigawa. 2017. “Effect of Rubber Block Height and Orientation on the Coefficients of Friction against Smooth Steel Surface Lubricated with Glycerol Solution.” Tribology International 110: 96–102. doi:10.1016/j.triboint.2017.02.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.