97
Views
9
CrossRef citations to date
0
Altmetric
Section C: Characterization of Ceramics

DOS Calculation for Stoichiometric and Oxygen Defected (Bi1/2Na1/2)(Mn1/2Nb1/2)O3

, , &
Pages 48-56 | Received 02 Sep 2013, Accepted 04 Oct 2013, Published online: 02 May 2014

References

  • V.A. Bokov, I.E. Mylnikova, S.A. Kizhaev, M.F. Bryzhina, and N.A. Grigoryan, Structure and magnetic properties of BiMnO3. Sov Phys Solid State. 7, 2993–2994 (1966).
  • T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B. 67, 180401(R)(1–4) (2003).
  • H. Chiba, T. Atou, and Y. Syono, Magnetic and electric properties of Bi(1-x)Srx MnO3: Hole doping effect on ferromagnetic perovskite BiMnO3. J Solid St Chem. 132, 139–143 (1997).
  • A.A. Belik, K. Kodama, N. Igawa, S. Shamoto, K. Hkosuda, and E. Takayama-Muromachi, Crystal and magnetic structures and properties of BiMnO3+δ. J Am Chem Soc. 132, 8137–8144 (2010).
  • E. Montanari, G. Calstani, A. Migliori, M. Diapaggi, F. Bolzoni, R. Cabassi, and E. Gilioli, High-temperature polymorphism in metastable BiMnO3. Chem Mater. 17, 6457–6467. (2005).
  • A.A. Belik and E. Takayama-Muromachi, Effects of isovalent substitution in the manganese sublattice on magnetic, thermal, and structural properties of BiMnO3: BiMn1-xMxO3 (M = Al, Sc, Cr, Fe, Ga; 0 ≤ x ≤ 0.2). Inorg Chem. 46, 5585–5590 (2007).
  • R. Seshadri and N.A. Hill, Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater. 13, 2892–2899 (2001).
  • R. Bujakiewicz-Koronska and D.M. Nalecz, First principles calculations of ideal and defected BiMnO3. Phase Trans. 86, 167–174 (2013).
  • I.O. Troyanchuk, D.D. Khalavin, E.F. Shapolova, N.V. Kasper, and S.A. Guretskii, Magnetic and transport properties of some insulating manganites. Phys Rev B. 58, 2422–2425 (1998).
  • A. Moreira dos Santos, A.K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C.N. R. Rao, Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys Rev B. 66, 064425-1-4 (2002).
  • H. Woo, T.A. Tyson, M. Croft, S.W. Cheong, and J.C. Wojcik, Correlations between the magnetic and structural properties of Ca-doped BiMnO3. Phys Rev B. 63, 134412-1–12 (2001).
  • K. Ławniczak-Jabłońska, I.N. Demchenko, E. Piskorska, A. Molak, J. Kachniarz, and M. Heinonnen, Study on the chemistry and structure of (Na(1-x)Bix) (Nb(1-y)Mny)O3 ceramics by XPS, AES and EPMA. Microchimica Acta. 145, 95–99 (2004).
  • A. Molak and M. Pawełczyk, Electrical Conduction Relaxation in the Bi(Mn1/3Nb2/3)O3 and (Bi1/9Na2/3)(Mn1/3Nb2/3)O3. Ceram Ferroel. 367, 179–189 (2008).
  • A. Molak, Flattening of the electric permittivity curve ɛ(T) of NaNbO3:yMn single crystals caused by stress application. J Phys: Condens Matter. 13, 9561–9573 (2001).
  • A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, and I. Gruszka, Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0. 75Bi0. 25)(Mn0. 25Nb0. 75)O3 ceramics. J Phys D: Appl Phys. 38, 1450–1460 (2005).
  • A. Molak, K. Ławniczak-Jablońska, P. Nachimuthu, and R.C. C. Perera, The estimation of the Mn atoms chemical bonding in (Na1-xBix)(Nb1-yMny)O3 ceramics and changeover in the electrical properties. Ferroelectrics. 418, 14–18 (2011).
  • B. Andrzejewski, A. Molak, B. Hilczer, A. Budziak, and R. Bujakiewicz-Korońska, Field induced changes in cycloidal spin ordering and coincidence between magnetic and electric anomalies in BiFeO3 multiferroic. J Magn Magn Mat. 342, 17–26 (2013).
  • . Rodrigues – Carvajal J, FullProf.2k Ver.4.7, ILL, 2010, http://www.ill.eu/sites/fullprof/php/programs.html.
  • T.A. Vanderah, M.W. Lufaso, A.U. Adler, I. Levin, J.C. Nino, V. Provenzano, and P.K. Schenck, Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5. J Solid St Chem. 179, 3467–3477 (2006).
  • J. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter. 14, 2745–2779 (2002).
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett. 77, 3865–3868 (1996).
  • A. Molak, M. Pawełczyk, J. Kubacki, and K. Szot, Nano-scale chemical segregation in surface layer of NaNbO3 crystals induced with thermal treatment at oxidising conditions studied by XPS, AFM, XRD, and electric properties tests. Phase Trans. 82, 662–682 (2009).
  • H. Amorín, R. Jiménez, E. Vila, M. Dollé, A. Castro, and M. Algueró, Electrical properties of ferroelectric BiMnO3–PbTiO3 under tailored synthesis and ceramic processing. Phase Trans. 86, 681–694 (2013).
  • A. Molak, K. Szot, A. Kania, J. Friedrich, and H.J. Penkalla, Insulator–metal transition in Mn-doped NaNbO3 induced by chemical and thermal treatment. Phase Trans. 81, 977–986 (2008).
  • A. Molak and K. Szot, Insulator–semiconductor-metallic state transition induced by electric fields in Mn-doped NaNbO3. Phys Stat Sol – RRL. 3, 127–129 (2009).
  • J.A. McLeod, Z.V. Pchelkina, L.D. Finkelstein, E.Z. Kurmaev, R.G. Wilks, A. Moewes, I.V. Solovyev, A.A. Belik, and E. Takayama-Muromachi, Electronic structure of BiMO3 multiferroics and related oxides. Phys Rev B. 81, 144103-1-10 (2010).
  • J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys. 5, 5360–5364 (2003).
  • A. Molak, Chemical capacitance proposed for manganite-based ceramics. Cond Matter Phys. 16, 31801-1-13 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.