175
Views
7
CrossRef citations to date
0
Altmetric
Articles

Application Oriented Selection of Optimal Sintering Temperature from User Perspective: A Study on K0.5Na0.5NbO3 Ceramics

, , , , , , & show all
Pages 64-76 | Accepted 31 Oct 2014, Published online: 01 Sep 2015

References

  • G. Vats and R. Vaish, “Selection of Lead-Free Piezoelectric Ceramics,” International Journal of Applied Ceramic Technology 1–11 (2013).
  • G. Vats and R. Vaish, “Piezoelectric material selection for transducers under fuzzy environment,” Journal of Advanced Ceramics, 2(2), 141–48 (2013).
  • G. Vats, R. Vaish, and C. R. Bowen, “Selection of Ferroelectric Ceramics for Transducers and Electrical Energy Storage Devices,” International Journal of Applied Ceramic Technology (2013).
  • R. Vaish, “Piezoelectric and Pyroelectric Materials Selection,” International Journal of Applied Ceramic Technology, 10 682–89 (2013).
  • G. Vats and R. Vaish, “Selection of optimal sintering temperature of K< sub> 0.5 Na< sub> 0.5 NbO< sub> 3 ceramics for electromechanical applications,” Journal of Asian Ceramic Societies, 2(1), 5–10 (2014).
  • S. Vats, G. Vats, R. Vaish, and V. Kumar, “Selection of optimal electronic toll collection system for India: A subjective-fuzzy decision making approach,” Applied Soft Computing (2014).
  • G. Vats and R. Vaish, “Phase Change Materials Selection for Latent Heat Thermal Energy Storage Systems (LHTESS): An Industrial Engineering Initiative Towards Materials Science,” Advanced Science Focus, 2(2), 140–47 (2014).
  • P. Sen and J.-B. Yang, “Multiple criteria decision support in engineering design,” Vol. 4. Springer London, (1998).
  • T. L. Saaty, “How to make a decision: the analytic hierarchy process,” European Journal of Operational Research, 48(1), 9–26 (1990).
  • R. V. Rao, “A material selection model using graph theory and matrix approach,” Materials Science and Engineering: A, 431(1), 248–55 (2006).
  • S. Opricovic and G.-H. Tzeng, “Extended VIKOR method in comparison with outranking methods,” European Journal of Operational Research, 178(2), 514–29 (2007).
  • Y. C. Deng H, RJ. Willis, “Inter-company comparison using TOPSIS with objective weights,” Comput Oper Res 27 963–73 (2000).
  • Y. Akao, “QFD: Past, present, and future,” pp. 1–12 in International Symposium on QFD. Vol. 97.
  • B. Prasad, “Review of QFD and related deployment techniques,” Journal of Manufacturing Systems, 17(3), 221–34 (1998).
  • E. E. Karsak, S. Sozer, and S. E. Alptekin, “Product planning in quality function deployment using a combined analytic network process and goal programming approach,” Computers & industrial engineering, 44(1), 171–90 (2003).
  • K. Prasad and S. Chakraborty, “A Quality Function Deployment-based Model for Materials Selection,” Materials & Design, 45 525–35 (2013).
  • A. Mayyas, Q. Shen, A. Mayyas, D. Shan, A. Qattawi, and M. Omar, “Using quality function deployment and analytical hierarchy process for material selection of body-in-white,” Materials & Design, 32(5), 2771–82 (2011).
  • G. H. Haertling, “Ferroelectric ceramics: history and technology,” Journal of the American Ceramic Society, 82(4), 797–818 (1999).
  • J. Rödel, W. Jo, K. T. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the Development of Lead‐free Piezoceramics,” Journal of the American Ceramic Society, 92(6), 1153–77 (2009).
  • T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” Journal of Electroceramics, 19(1), 113–26 (2007).
  • D. Lin, D. Xiao, J. Zhu, and P. Yu, “Piezoelectric and ferroelectric properties of [Bi0.5(Na1-x-yKxLiy)]TiO3 lead-free piezoelectric ceramics,” Applied physics letters, 88 062901 (2006).
  • S. T. Lau, C. Cheng, S. Choy, D. Lin, K. Kwok, and H. L. Chan, “Lead-free ceramics for pyroelectric applications,” Journal of applied physics, 103(10) 104105-05-4 (2008).
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature, 432(7013), 84–87 (2004).
  • D. Xiao, D. Lin, J. Zhu, and P. Yu, “Studies on new systems of BNT-based lead-free piezoelectric ceramics,” Journal of Electroceramics, 21(1–4) 34–38 (2008).
  • J. Abe, M. Kobune, K. Kitada, T. Yazawa, H. Masumoto, and T. Goto, “Effects of spark-plasma sintering on the piezoelectric properties of high-density (1-x)(Na0.5K0.5) NbO3-xLiTaO3 ceramics,” Journal of Korean Physical Society, 51 810(2007).
  • C. Alemany, A. Gonzalez, L. Pardo, B. Jiménez, F. Carmona, and J. Mendiola, “Automatic determination of complex constants of piezoelectric lossy materials in the radial mode,” Journal of Physics D: Applied Physics, 28(5), 945(1995).
  • R.-C. Chang, S.-Y. Chu, Y.-F. Lin, C.-S. Hong, and Y.-P. Wong, “An investigation of (Na0.5K0.5)NbO3–CaTiO3 based lead-free ceramics and surface acoustic wave devices,” Journal of the European Ceramic Society, 27(16), 4453–60 (2007).
  • K. Chen, G. Xu, D. Yang, X. Wang, and J. Li, “Dielectric and piezoelectric properties of lead-free 0.95(K0.5Na0.5)NbO3–0.05LiNbO3 crystals grown by the Bridgman method,” Journal of applied physics, 101(4) 044103-03-4 (2007).
  • A. Chowdhury, J. Bould, Y. Zhang, C. James, and S. J. Milne, “Nano-powders of Na0.5K0.5NbO3 made by a sol–gel method,” Journal of Nanoparticle Research, 12(1), 209–15 (2010).
  • H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, and W. Zhou, “Preparation and piezoelectric properties of Na0.5K0.5NbO3 lead-free piezoelectric ceramics with pressure-less sintering,” Materials science & engineering. B, Solid-state materials for advanced technology, 131(1–3), 83–87 (2006).
  • L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate,” Journal of the American Ceramic Society, 42(9), 438–42 (1959).
  • J. Hao, Z. Xu, R. Chu, W. Li, G. Li, and Q. Yin, “Relaxor behavior and dielectric properties of (La, Ta)-modified Na0.5K0.5NbO3 lead-free ceramics,” Journal of Alloys and Compounds, 484(1), 233–38 (2009).
  • R. Jaeger and L. Egerton, “Hot Pressing of Potassium‐Sodium Niobates,” Journal of the American Ceramic Society, 45(5), 209–13 (1962).
  • N. Liu, K. Wang, J. F. Li, and Z. Liu, “Hydrothermal Synthesis and Spark Plasma Sintering of Na0.5K0.5NbO3 Lead-Free Piezoceramics,” Journal of the American Ceramic Society, 92(8), 1884–87 (2009).
  • T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, and T. Morita, “(K, Na)NbO3 lead-free piezoelectric ceramics synthesized from hydrothermal powders,” Materials Letters, 64(2), 125–28 (2010).
  • Y. Noguchi, M. Miyayama, and Y. Kizaki, “Defect control for superior properties in Na0.5K0.5NbO3 single crystals,” Key Engineering Materials, 350 85–88 (2007).
  • L. Pardo, A. García, K. Brebøl, L. P. Curecheriu, L. Mitoseriu, E. Mercadelli, and C. Galassi, “Piezoelectric characterization of lead-free ferroelectric ceramics,” Processing and Application of Ceramics, 4(3), 199–207 (2010).
  • H.-Y. Park, K.-H. Cho, D.-S. Paik, S. Nahm, H.-G. Lee, and D.-H. Kim, “Microstructure and piezoelectric properties of lead-free (1-x)Na0.5K0.5NbO3-xCaTiO3 ceramics,” Journal of applied physics, 102(12) 124101-01-5 (2007).
  • E. Ringgaard and T. Wurlitzer, “Lead-free piezoceramics based on alkali niobates,” Journal of the European Ceramic Society, 25(12), 2701–06 (2005).
  • Y. Saito and H. Takao, “High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system,” Ferroelectrics, 338(1), 17–32 (2006).
  • Z. Y. Shen, J. F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, “Electrical and Mechanical Properties of Fine Grained Li/Ta-Modified (Na, K)NbO3-Based Piezoceramics Prepared by Spark Plasma Sintering,” Journal of the American Ceramic Society, 93(5), 1378–83 (2010).
  • G. Shirane, R. Newnham, and R. Pepinsky, “Dielectric Properties and Phase Transitions of NaNbO3 and (Na, K)NbO3,” Physical Review, 96(3), 581(1954).
  • Y. Shiratori, A. Magrez, and C. Pithan, “Particle size effect on the crystal structure symmetry of Na0.5K0.5NbO3,” Journal of the European Ceramic Society, 25(12), 2075–79 (2005).
  • K. Singh, V. Lingwal, S. Bhatt, N. Panwar, and B. Semwal, “Dielectric properties of potassium sodium niobate mixed system,” Materials research bulletin, 36(13), 2365–74 (2001).
  • C. Sun, X. Xing, J. Chen, J. Deng, L. Li, R. Yu, L. Qiao, and G. Liu, “Hydrothermal synthesis of single crystalline (K, Na)NbO3 powders,” European journal of inorganic chemistry, 2007(13), 1884–88 (2007).
  • K. Wang, B.-P. Zhang, J.-F. Li, and L.-M. Zhang, “Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sintering: Annealing effect on electrical properties,” Journal of Electroceramics, 21(1–4) 251–54 (2008).
  • Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, “Compositional Inhomogeneity in Li and Ta Modified (K, Na)NbO3 Ceramics,” Journal of the American Ceramic Society, 90(11), 3485–89 (2007).
  • Y. Zhou, J. Yu, M. Guo, and M. Zhang, “Microwave Hydrothermal Synthesis and Piezoelectric Properties Investigation of K0.5Na0.5NbO3 Lead-Free Ceramics,” Ferroelectrics, 404(1), 69–75 (2010).
  • R. Zuo, C. Ye, and X. Fang, “Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3–BiScO3 ceramics,” Jpn. J. Appl. Phys, 46 6733–6 (2007).
  • R. López-Juárez, F. González, and M.-E. Villafuerte-Castrejón, “Lead-Free Ferroelectric Ceramics with Perovskite Structure,” (2011).
  • R. López, F. González, M. Cruz, and M. Villafuerte-Castrejon, “Piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics synthesized by spray drying method,” Materials research bulletin, 46(1), 70–74 (2011).
  • A. Hambali, S. Sapuan, N. Ismail, and Y. Nukman, “Application of analytical hierarchy process in the design concept selection of automotive composite bumper beam during the conceptual design stage,” Sci Res Essay, 4(4), 198–211 (2009).
  • Y. Zhen and J. F. Li, “Normal Sintering of (K, Na) NbO3‐Based Ceramics: Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties,” Journal of the American Ceramic Society, 89(12), 3669–75 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.