345
Views
6
CrossRef citations to date
0
Altmetric
Articles

Design of a Low Frequency Piezoelectric Energy Harvester for Rodent Telemetry

, &
Pages 98-118 | Accepted 06 Nov 2014, Published online: 01 Sep 2015

References

  • C. B. Williams, and R. B. Yates, Analysis of a Micro-electric Generator for Microsystems. The 8th International Conference on Solid-State Sensors and Actuators. 369–372 (1995).
  • B. M. Badr, and W. G. Ali, Application of Piezoelectric Materials. Advanced Materials Research. 189–193, 3612–3620 (2011).
  • P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices. Proceedings of the IEEE. 96(9), 1457–1486 (2008).
  • S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology. 17(12), R175–R195 (2006).
  • P. Glynne-Jones, S. P. Beeby, and N. M. White, Towards a piezoelectric vibration-powered microgenerator. IEE Proceedings – Science, Measurement and Technology. 148(2), 68–72 (2001).
  • S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications. 26(11), 1131–1144 (2003).
  • R. Duggirala, H. Li, A. M. Pappu, Z. Fu, A. Apsel, and A. Lal, Radioisotope Micropower Generator for CMOS Self-powered Sensor Microsystems. Proceeding of 4th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications Power MEMS. 133–136 (2004).
  • M. Marzencki, S. Basrour, B. Charlot, A. Grasso, M. Colin, and L. Valbin, Design and Fabrication of Piezoelectric Micro Power Generators for Autonomous Microsystems. Proceeding Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS DTIP05. 299–302 (2005).
  • D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle, and D. J. Kim, The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. Journal of Micromechanics and Microengineering. 18(5), 055017–7 (2008).
  • C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch, and R. B. Yates, Development of an electromagnetic micro-generator. IEE Proceedings Circuits, Devices Systems. 148(6), 337–342 (2001).
  • M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, Design and fabrication of a new vibration-based electromechanical generator. Sensors Actuators A: Physical. 92(1-3), 335–342 (2001).
  • P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, An electromagnetic, vibration-powered generator for intelligent sensor systems. Sensors and Actuators A: Physical. 110(1–3), 344–349 (2004).
  • A. Pérez-Rodríguez, C. Serre, N. Fondevilla, C. Cereceda, JR. Morante, J. Esteve, and J. Montserrat, Design of electromagnetic inertial generators for energy scavenging applications. Proc. Eurosensors XIX. paper MC5 (2005).
  • W. J. Li, Z. Wen, P. K. Wong, G. M. H. Chan, and P. H. W. Leong, A Micromachined Vibration-Induced Power Generator for Low Power Sensors of Robotic Systems. The 8th International Symposium on Robotics with Applications. (2000).
  • N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen, A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sensors and Actuators A. 97(98), 685–690 (2002).
  • S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. P. Chandrakasan, and J. H. Lang, Vibration-to-Electric Energy Conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Syst. 9(1), 64–76 (2001).
  • P. D. Mitcheson, P. Miao, B. H. Stark, A. S. Holmes, E. M. Yeatman, and T. C. Green, Analysis and Optimisation of MEMS On-Chip Power Supply for Self-Powering of Slow Moving Sensors. The 17th European conference on sensors and actuators. 48–51 (2003).
  • Y. Arakawa, Y. Suzuki, and N. Kasagi, Micro Seismic Power Generator Using Electret Polymer Film. The 4th Micro and Nanotechnology for Power Generation and Energy Conversion Applications Power MEMS. 187–190 (2004).
  • G. Despesse, T. Jager, C. Jean-Jacques, J. M. Léger, A. Vassilev, S. Basrour, and B. Charlot, Fabrication and Characterization of High Damping Electrostatic Micro Devices for Vibration Energy Scavenging. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. 386–90 (2005).
  • S. J. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion. PhD Thesis University of California, Berkeley (2003).
  • M. Herbin, J. P. Gasc, and S. Renous, Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity. J COMP PHYSIOL A. 190(11), 895–906 (2004).
  • H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations with Wideband Operation Range and Steadily Increased Output Power. Journal of Microelectromechanical Systems. 20(5) 1131–1142 (2011).
  • M. Zhu, E. Worthington, and J. Njuguna, Analyses of Power Output of Piezoelectric Energy-Harvesting Devices Directly Connected to a Load Resistor Using a Coupled Piezoelectric-Circuit Finite Element Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 56(7), 1309–1318 (2009).
  • B. M. Badr, and W. G. Ali, Fuzzy Control for Nanopositioning Piezoelectric Actuators. Germany: VDM Verlag: 2011.
  • H. Jang, Y. Na, J. Park, and S. Choi, Design and Multi-physics Analysis of Anemovane Using the Piezoelectric Unimorph. Journal of Ferroelectrics. 452(1), 114–121 (2013).
  • H. A. Sodano, and D. J. Inman, Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. Journal of Intelligent Material Systems and Structures. 16(10), 799–807 (2005).
  • M. Zhu, E. Worthington, and A. Tiwari, Design Study of Piezoelectric Energy Harvesting Devices for Generation of Higher Electrical Power Using a Coupled Piezoelectric-Circuit Finite Element Method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 57(2), 427–437 (2010).
  • H. F. Zhang, P. Lee, and J. A. Kosinski, Experimental Study of A Frequency Adjustable Piezoelectric Bimorph Energy Harvester. Journal of Ferroelectrics. 437(1), 36–46 (2012).
  • J. E. Kim, and Y. Y. Kim, Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio With a Distributed Tip Mass. Journal of Vibration and Acoustics. 133(4), 041010–041026 (2011).
  • T. H. Ng, and W. H. Liao, Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures. 16(10) 785–797 (2005).
  • W. C. Chuang, H. L. Lee, P. Z. Chang, and Y. C. Hu, Review on the Modeling of Electrostatic MEMS. Sensors, 10(6), 6149–6171 (2010).
  • S. Mariani, A. Ghisi, F. Fachin, F. Cacchione, A. Corigliano, and S. Zerbini, A three-scale FE approach to reliability analysis of MEMS sensors subject to impacts. Meccanica. 43(5), 469–483 (2008).
  • P. J. Frey, and P. L. George, Mesh Generation: Application to Finite Elements, UK: ISTE Press; 2000.
  • V. M. Rodriguez-Zermeno, N. Mijatovic, C. Traeholt, T. Zirngibl, E. Seiler, A. B. Abrahamsen, N. F. Pedersen, and M. P. Sørensen, Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach. IEEE Transactions on Applied Superconductivity. 21(3), 3273–3276 (2011).
  • H. Hosaka, K. Itao, and S. Kuroda, Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A. 49(1–2), 87–95 (1995).
  • Damping in Solid Mechanics of Comsol, available at http://hpc.mtech.edu/comsol/pdf/sme/StructuralMechanicsModuleUsersGuide.pdf, (last visited Jan. 2013).
  • F. Song, S. Hao, M. Hao, and Z. Yang, Research on Acceleration and Deceleration Control Algorithm of NC Instruction Interpretations with High-Order Smooth. The first International Conference on Intelligent Robotics and Applications (ICIRA). 548–557 (2008).
  • H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures. 21(3), 1–12 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.