83
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Phase Development and Dielectric, Ferroelectric and Piezoelectric Properties of Pb(Mg1/3Nb2/3)0.9Ti0.1O3-Bi0.5(Na0.74K0.26)0.5TiO3 Ceramics

, , , , , & show all
Pages 1-8 | Received 26 Oct 2014, Accepted 15 Feb 2015, Published online: 23 Dec 2015

References

  • A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci. 41, 31–52 (2006).
  • V. V. Shvartsman, A. L. Kholkin, I. P. Raevski, S. I. Raevskaya, F. I. Savenko, and A. S. Emelyanov, Macroscopic and local piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals exhibiting giant piezoelectric response. J Appl Phys. 113, 187208/1–4 (2013).
  • S. Xu, G. Poirier, and N. Yao, PMN-PT nanowires with a very high piezoelectric constant. Nano Lett. 12, 2238–2242 (2012).
  • Y. Cheng, Y. Yang, Y. Wang, and H. Meng, Study on Pb(Mg1/3Ta2/3)O3-Pb(Mn1/3Sb2/3)O3-Pb(ZrxTi1-x)O3 high power piezoelectric ceramics near the morphotropic phase boundary. J Alloys Compd. 508, 364–369 (2010).
  • Z. G. Ye, High-performance piezoelectric single crystals of complex perovskite solid solutions. Mater Res Soc Bull. 34, 277–283 (2009).
  • X. Zhu, E. Defay, G. L. Rhun, M. Aid, Y. Xu, Q. Zhang, Y. Xiao, H. Gao, D. Liang, J. Zhu, J. Zhu, and D. Xiao, High permittivity 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor thin films for high-value, wide-temperature capacitor applications. J Appl Phys. 112, 054105/1–5 (2012).
  • M. Promsawat, J. Y. Y. Wong, Z. Ren, H. N. Tailor, A. Watcharapasorn, Z. G. Ye, and S. Jiansirisomboon, Enhancement in dielectric, ferroelectric, and electrostrictive properties of Pb(Mg1/3Nb2/3)0.9Ti0.1O3 ceramics by CuO addition. J Alloys Compd. 587, 618–624 (2014).
  • N. Triamnak, M. Unruan, S. Ananta, and R. Yimnirun, Effects of uniaxial stress on dielectric properties of 0.9PMN-0.1PT ceramics. J Electroceram. 21, 819–822 (2008).
  • R. Skulski, P. Wawrzala, and M. Plonska, The dipole moments in 0.9PMN-0.1PT ceramic samples. Physica B. 349, 316–321 (2004).
  • J. H. Ko, D. H. Kim, S. Tsukada, S. Kojima, A. A. Bokov, and Z. G. Ye, Crossover in the mechanism of ferroelectric phase transition of Pb[(Mg1/3Nb2/3)1-xTix]O3 single crystals studied by Brillouin light scattering. Phys Rev B. 82, 104110/1–7 (2010).
  • X. Wen, C. Feng, L. Chen, and S. Huang, Effect of order-diordered nano-domains on the dielectric and electrical properties of PMNT ceramics. J Alloys Compd. 422, 244–248 (2006).
  • U. Syamaprasad, A. R. S. Nair, M. S. Sarma, P. Guruswamy, P. S. Mukherjee, A. D. Damodaran, L. Krishnamurthy, and M. Achuthan, Multilayer capacitor ceramics in the PMN-PT-BT system: effect of MgO and 4PbO·B2O3 additions. J Mater Sci. 8, 199–205 (1997).
  • L. Huang, J. Zeng, W. Ruan, W. Zhao, K. Zhao, and G. Li, Fabrication and dielectric properties of transparent PZN-BT ceramic. Ceram Int. 39, S171–S174 (2013).
  • F. Xia and X. Yao, Piezoelectric and dielectric properties of PZN-BT-PZT solid solutions. J Mater Sci. 34, 3341–3343 (1999).
  • W. Z. Zhu and M. Yan, Effect of Mn-doping on the morphotropic phase boundary of PZN-BT-PT system. J Mater Sci Lett. 20, 1527–1529 (2001).
  • N. Jaitanong, W. C. Vittayakorn, and A. Chaipanich, Phase development and dielectric responses in PMN-BNT ceramics. Ceram Int. 36, 1479–1483 (2010).
  • P. Jaita, A. Watcharapasorn, and S. Jiansirisomboon, Effects BNT compound incorporated on structure and electrical properties of PZT ceramic. Curr Appl Phys. 11, S77–S81 (2011).
  • X. X. Wang, X. G. Tang, and H. L. W. Chan, Electromechanical and ferroelectric properties of (Bi1/2Nb1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics. Appl Phys Lett. 85, 91–93 (2004).
  • M. Otonicar, S. D. Skapin, M. Spreitzer, and D. Suvorov, Compositional range and electric properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J Eur Ceram Soc. 30, 971–979 (2010).
  • H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn J Appl Phys. 42, 7401–7403 (2003).
  • J. C. Bruno, A. A. Cavalheiro, M. A. Zaghete, M. Cilense, and J. A. Varela, Structural effects of Li and K additives on the columbite precursor and 0.9PMN-0.1PT powders. Mater Chem Phys. 84, 120–125 (2004).
  • R. D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys. 73, 348–366 (1993).
  • N. Zhong, X. L. Dong, D. Sun, P. H. Xiang, H. Du, Electrical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics modified with WO3. Mater Res Bull. 39, 175–184 (2004).
  • N. Zhong, P. H. Xiang, D. Z. Sun, and X. L. Dong, Effect of rare earth additives on the microstructure and dielectric properties of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 ceramics. Mater Sci Eng B. 116, 140–145 (2005).
  • Z. Yang, B. Liu, L. Wei, and Y. Hou, Structure and electrical properties of (1-x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary. Mater Res Bull. 43, 81–89 (2008).
  • V. D. N. Tran, T. H. Dinh, H. S. Han, W. Jo, and J. S. Lee, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram Int. 39, S119–S124 (2013).
  • O. Bidault, M. Licheron, E. Husson, G. Calvarin, and A. Morell, Experimental evidence for spontaneous relaxor to ferroelectric phase transition in Pb(Mg1/3Nb2/3)O3-10%Ti. Solid State Commun. 98, 765–769 (1996).
  • M. Promsawat, A. Watcharapasorn, H. N. Tailor, S. Jiansirisomboon, and Z. G. Ye, Enhanced dielectric, ferroelectric, and electrostrictive properties of Pb(Mg1/3Nb2/3)0.9Ti0.1O3 ceramics by ZnO modification. J Appl Phys. 113, 204101/1–6 (2013).
  • G. H. Haertling, Ferroelectric ceramics: history and technology. J Am Ceram Soc. 82, 797–818 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.