219
Views
5
CrossRef citations to date
0
Altmetric
SECTION E: INTERFACE AND DOMAIN ENGINEERING

Charged Domain Walls in Lithium Niobate with Inhomogeneous Bulk Conductivity

, , , &
Pages 109-116 | Received 15 Jul 2014, Accepted 30 Sep 2014, Published online: 25 Mar 2015

References

  • S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi, Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109 (2005).
  • T. Sluka, A. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012).
  • G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
  • T. Sluka, A. Tagantsev, P. Bednyakov, and N. Setter, Free-electron gas at charged domain walls in insulating BaTiO3. Nat Commun. 4, 1808 (2013).
  • J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y-H Chu, A Rother, M. E. Hawkridge, PYu Maksymovych, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).
  • J. Fousek and L. E. Cross, Engineering multidomain ferroic samples. Ferroelectrics. 252, 171–180 (2001).
  • S. Wada, Domain wall engineering in lead-free piezoelectric materials. Ferroelectrics. 389, 3–9 (2009).
  • P. Maksymovych, A. N. Morozovska, P. Yu, E. A. Eliseev, Y. H. Chu, R. Ramesh, A. P. Baddorf, and S. V. Kalinin, Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).
  • K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, Electric-field poling in Mg-doped LiNbO3. J. Appl. Phys. 96, 6585–6590 (2004).
  • M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).
  • V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, and A. A. Esin, Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl. Phys. Lett. 103, 102905 (2013).
  • V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, and E. I. Shishkin, Formation and evolution of charged domain walls in congruent lithium niobate. Appl. Phys. Lett. 77(22), 3636–3638 (2000).
  • E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Ya. Shur, Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors. Phys. Rev. B. 83, 235313 (2011).
  • R. S. Weis and T. K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A. 37, 191–203 (1985).
  • T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin, Heidelberg: Springer-Verlag; 2008.
  • V. Ya. Shur, Nano-and micro-domain engineering in normal and relaxor ferroelectrics. In: Ye Z. G.. Advanced dielectric, piezoelectric and ferroelectric materials – synthesis, characterization and applications. Cambridge: Woodhead; 2008: 622–669.
  • P. F. Bordui, D. H. Jundt, E. M. Standifer, R. G. Norwood, R. L. Sawin, and J. D. Galipeau, Chemically reduced lithium niobate single crystals: processing, properties and improved surface acoustic wave device fabrication and performance. J. Appl. Phys. 85, 3766–3769 (1999).
  • V. Ya. Shur, N. V. Korovina, and A. L. Gruverman, Time dependence and distribution of the internal field in lead germanate. Sov. Phys. Tech. Phys. 30, 1204–1205 (1985).
  • V. Ya Shur, A. L. Gruverman, N. V. Korovina, M. Z. Orlova, and L. V. Sherstobitova, Spatial distribution of the internal field in lead germanate having different types of domain structure. Phys. Solid State. 30, 172–174 (1988).
  • V. Ya. Shur, A. I. Lobov, A. G. Shur, S. Kurimura, Y. Nomura, K. Terabe, X. Y. Liu, and K. Kitamura, Rearrangement of ferroelectric domain structure induced by chemical etching Appl. Phys. Lett. 87, 022905 (2005).
  • V. Ya. Shur and P. S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy. J. Appl. Phys. 116, 066802 (2014).
  • P. S. Zelenovskiy, M. D. Fontana, V. Ya. Shur, P. Bourson, and D. K. Kuznetsov, Raman visualization of micro- and nanoscale domain structures in lithium niobate. Appl. Phys. A – Mater. Sci. & Proc. 99, 741–744.
  • V. Ya. Shur, E. I. Shishkin, E. V. Nikolaeva, M. S. Nebogatikov, D. O. Alikin, P. S. Zelenovskiy, M. F. Sarmanova, and M. A. Dolbilov, Study of nanoscale domain structure formation using Raman confocal microscopy. Ferroelectrics. 398, 91–97 (2010).
  • V. Ya. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals. J. Appl. Phys. 110 (5), 052013 (2011).
  • A. Ye. Lushkin, V. B. Nazarenko, K. P. Pilipchak, V. F. Shnyukov, and A. G. Naumovets, The impact of annealing and evaporation of LiNbO3 crystals on their surface composition. J. Phys. D: Appl. Phys. 32, 22–28 (1999).
  • H. Gnaser, Low-Energy Ion Irradiation of Solid Surfaces. Berlin, Heidelberg: Springer; 1999.
  • A Klekamp, H Donnerberg, W Heiland, KJ Snowdon: Electron bombardment induced desorption of oxygen from LiNbO3. Surf Sci. 200, L465–L469 (1988).
  • A. Klekamp, K. J. Snowdon, and W. Heiland, Radiation effects and defects in solids: incorporating plasma science and plasma technology. Radiat. Eff. Defects Solids. 108, 241–249 (1989).
  • V. I. Pryakhina, V. Ya Shur, D. O. Alikin, and S. A. Negashev: Polarization reversal in MgO:LiNbO3 single crystals modified by plasma-source ion irradiation. Ferroelectrics. 439, 20–32 (2012).
  • V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics. 236, 129–144 (2000).
  • V. Ya. Shur, Domain engineering in lithium niobate and lithium tantalate: Domain wall motion. Ferroelectrics. 340, 3–16 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.