130
Views
14
CrossRef citations to date
0
Altmetric
SECTION E: INTERFACE AND DOMAIN ENGINEERING

Electron Beam Domain Patterning of MgO-Doped Lithium Niobate Crystals Covered by Resist Layer

, , &
Pages 117-126 | Received 15 Jul 2014, Accepted 30 Sep 2014, Published online: 25 Mar 2015

References

  • R. L. Byer, Quasi-phasematched nonlinear interactions and devices. J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997).
  • Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H. S. Halwa, Vol. 4. New York: Academic Press; 2001.
  • M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993).
  • L. E. Myers, R. C. Eckhardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
  • G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, Generation of high-power blue light in periodically poled LiNbO3. Opt. Lett. 23, 171–173 (1998).
  • V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics. 236, 129–144 (2000).
  • A. Gruverman, O. Auciello, and H. Tokumoto, Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101–123 (1998).
  • K. Terabe, M. Nakamura, S. Takezawa, K. Kitamura, S. Higuchi, Y. Gotoh, and Y. Cho, Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal. Appl. Phys. Lett. 82, 433–435 (2003).
  • A. V. Ievlev, S. Jesse, A. N. Morozovska, E. Strelcov, E. A. Eliseev, Y. V. Pershin, A. Kumar, V.Ya. Shur, and S. V. Kalinin, Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nat. Phys. 10, 59–66 (2014).
  • H. Ito, C. Takyu, and H. Inaba, Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes. Electronics Lett. 27, 1221–1222 (1991).
  • M. Yamada and K. Kishima, Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Lett. 27, 828–829 (1991).
  • A. Nutt, V. Gopalan, and M. Gupta, Domain inversion in LiNbO3 using direct electron-beam writing. Appl. Phys. Lett. 60, 2828–2830 (1992).
  • M. Fujimura, K. Kintaka, T. Suhara, and H. Nishihara, LiNbO3 waveguide quasi-phase-matching second harmonic generation devices with ferroelectric-domain-inverted gratings formed by electron-beam scanning. J. Lightwave Technol. 11, 1360–1368 (1993).
  • S. Kurimura, I. Shimoya and Y. Uesu, Domain inversion by an electron-beam-induced electric field in MgO:LiNbO3, LiNbO3 and LiTaO3. Jpn. J. Appl. Phys. 35, L31–L33 (1996).
  • C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, V. Couderc, A. Barthélémy, A. Martinez, and J. Hauden, Electron-beam poling on Ti:LiNbO3. Appl. Opt. 40, 6056–6061 (2001).
  • C. Restoin, C. Darraud-Taupiac, J. L. Decossas, J. C. Vareille, J. Hauden, and J. Martinez, Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3. J. Appl. Phys. 88, 6665–6668 (2000).
  • C. Restoin, S. Massy, C. Darraud-Taupiac, A. Barthelemy, Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment. Opt. Mater. 22, 193–199 (2003).
  • J. He, S. H. Tang, Y. Q. Qin, P. Dong, H. Z. Zhang, C. H. Kang, W. X. Sun, and Z. X. Shen, Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography. J. Appl. Phys. 93, 9943–9946 (2003).
  • L. Mateos, L. E. Bausá, and M. O. Ramírez, Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing. Appl. Phys. Lett. 102, 042910 (2013).
  • L. S. Kokhanchik and T. R. Volk, Domain inversion in LiNbO3 and Zn-doped LiNbO3 crystals by the electron-beam irradiation of the nonpolar Y-surface. Appl. Phys. B. 110, 367–373 (2013).
  • Y. Glickman, E. Winebrand, A. Arie, and G. Rosenman, Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion. Appl. Phys. Lett. 88, 011103 (2006).
  • X. Li, K. Terabe, H. Hatano, and K. Kitamura, Electron-beam domain writing in stoichiometric LiTaO3 single crystal by utilizing resist layer. Jpn. J. Appl. Phys. 45, L399–L402 (2006).
  • X. Li, K. Terabe, H. Hatano, K. Kitamura, Domain patterning in LiNbO3 and LiTaO3 by focused electron beam. J. Cryst. Growth. 292, 324–327 (2006).
  • E. V. Emelin, A. I. Il’in, and L. S. Kokhanchik, Recording of domains by an electron beam on the surface of +Z cuts of lithium niobate. Phys. Solid State. 55, 540–546 (2013).
  • V. Ya. Shur, D. S. Chezganov, D. O. Alikin, M. M. Neradovskiy, D. K. Kuznetsov, and M. M. Smirnov, Domain switching by electron beam irradiation of Z+ polar surface in Mg-doped lithium niobate. Appl. Phys. Lett. 105, 052908 (2014).
  • D. S. Hum and M. M. Fejer, Quasi-phasematching. C. R. Phys. 8, 180–198 (2007).
  • R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer: Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett. 75, 1673–1675 (1999).
  • C. Canalias, and V. Pasiskevicius, Mirrorless optical parametric oscillator. Nat. Photonics. 1, 459–462 (2007).
  • V. Ya. Shur, Domain nanotechnology in lithium niobate and lithium tantalate crystals. Ferroelectrics. 399, 97–106 (2010).
  • R. S. Weis, and T. K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A: Solids Surf. 37, 191–203 (1985).
  • T. Volk and M. Wöhlecke: Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin Heidelberg: Springer-Verlag; 2008.
  • M. Yamada, M. Saitoh, and H. Ooki, Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals. Appl. Phys. Lett. 69, 3659–3661 (1996).
  • V. Ya Shur, E. L. Rumyantsev, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, Domain kinetics during periodic domain patterning in lithium niobate. Phys. Solid State. 41, 1681–1687 (1999).
  • Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Green-induced infrared absorption in MgO doped LiNbO3. Appl. Phys. Lett. 78, 1970–1972 (2001).
  • A. Kuroda, S. Kurimura, and Y. Uesu, Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields. Appl Phys Lett. 69, 1565–1567 (1996).
  • G.I Rosenman, V.V Letuchev, Y. uL Chepelev, O.V Malyshkina, V. Ya. Shur, and V. P V.P. Kuminov, Emission of Electrons on Switching of the Gd2(MoO4)3 Ferroelectric-Ferroelastic in Electric Field, Appl. Phys. Lett, V.56, N.7, pp.689–691 (1990).
  • V. Ya. Shur, A. I. Lobov, A. G. Shur, S. Kurimura, Y. Nomura, K. Terabe, X. Y. Liu, K. Kitamura, Rearrangement of Ferroelectric Domain Structure Induced by Chemical Etching, APL, V.87, N.2, p.022905 (2005).
  • A.I. Lobov, V. Ya. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3. Ferroelectrics. 341, 109–116 (2006).
  • V. Ya. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin, and M. M. Smirnov, Shape of isolated domains in lithium tantalate single crystals at elevated temperatures. Appl. Phys. Lett. 103, 242903 (2013).
  • V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, A. P. Chernykh, K.Terabe, K. Kitamura, H. Ito, and K. Nakamura, Domain Shape in Congruent and Stoichiometric Lithium Tantalate, Ferroelectrics, V.269, pp.195–200 (2002).
  • D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, R. Rauvin: CASINO V2.42 – A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning. 29, 92–101 (2007).
  • V. Ya. Shur, I. S. Baturin, A. R. Akhmatkhanov, D. S. Chezganov, A. A. Esin, Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl. Phys. Lett. 103, 102905 (2013).
  • V. Ya. Shur, Correlated Nucleation and Self-organized Kinetics of Ferroelectric Domains, in “Nucleation Theory and Applications”. Ed. by J.W.P. Schmelzer, Weinheim: WILEY-VCH 178–214 2005.
  • V. Ya. Shur, Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3. J. Mater. Sci. 41, 199–210 (2006).
  • V. Ya Shur, Chezganov D.S, Nebogatikov M.S, Baturin I.S, Neradovskiy MM: Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures. J. Appl. Phys. 112, 104113 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.