204
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Glycine nanostructures and domains in beta-glycine: computational modeling and PFM observations

, , , , , , , & show all
Pages 28-45 | Received 29 Aug 2015, Accepted 30 Oct 2015, Published online: 15 Apr 2016

References

  • V. S. Bystrov, E. Paramonova, I. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, A. L. Kholkin, Bioferroelectricity: Diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 440, 3–24 (2012).
  • H. R. Leuchtag, V. S. Bystrov, Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction. Ferroelectrics. 220, 157–204 (1999).
  • N. Amdursky, P. Beker, J. Schklovsky, E. Gazit, G. Rosenman, Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics. 399, 107–117 (2010).
  • J. A. Tuszynski, T. J. A. Craddock, E. J. Carpenter, Bio-ferroelectricity at the nanoscale. J Comp Theor Nanoscience. 5, 2022–2032 (2008).
  • V. S. Bystrov, I. Bdikin, A. Heredia, R. C. Pullar, E. Mishina, A. Sigov, A. L. Kholkin, Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: G. Ciofani, A. Menciassi, eds. Piezoelectric nanomaterials for biomedical applications. Berlin, Heidelberg: Springer-Verlag;187–211 (2012).
  • S. B. Lang, Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials – speculation on their biological significance. IEEE Trans Dielectr Electr Insul.7, 466–473 (2000).
  • V. S. Bystrov, E. Seyedhosseini, I. Bdikin, S. Kopyl, S. M. Neumayer, J. Coutinho, A. L. Kholkin, Bioferroelectricity in nanostructured glycine and thymine: molecular modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 475, 107–126 (2015).
  • M. E. Lines, A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford: Clarendon Press; (1977).
  • G. A. Smolenskii, V. A. Bokon, V. A. Isupov, eds: Physics of ferroelectric phenomena: ferroelectrics and related materials. New York: Gordon and Breach; (1985). (in Russian: Leningrad: Nauka; 1985).
  • J. W. Goodby, R. Blinc, N. A. Clark, S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai, K. Yoshino, B. Zeks, eds: Ferroelectric liquid crystals: principles, properties and applications. Philadelphia: Gordon and Breach; (1991).
  • S. Horiuchi, R. Kumai, Y. Tokura, Hydrogen bonding molecular chains for high-temperature ferroelectricity. Adv Mater. 23, 2098 (2011).
  • F. Kagawa, S. Horiuchi, N. Minami, S. Ishibashi, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric. NANO Letters. 14, 239–243 (2014).
  • V. S. Bystrov, N. K. Bystrova, Bioferroelectricity and optical properties of biological systems. Advanced Organic and Inorganic Optical Materials, Proc SPIE 5122.132–136 (2002).
  • V. S. Bystrov, E. Seyedhosseini, S. Kopyl, I. K. Bdikin, A. L. Kholkin, Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J Appl Phys. 116, 066803 (2014).
  • V. V. Lemanov, S. N. Popov, G. A. Pankova, Protein amino acid crystals: structure, symmetry, physical properties. Ferroelectrics. 285, 581–590 (2003).
  • G. L. Perlovich, L. K. Hansen, Bauer-Brandl A: The polymorphism of glycine: thermodynamical and structural aspects. J Therm Anal Calorim. 66, 699–715 (2001).
  • E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskava, E. S. Shutova, Poylmorphism of glycine: Thermodynamic aspects. Part I. Relative stability of the polymorphs. J Therm Anal Calorim.73, 409–418 (2003).
  • A. Dawson, D. R. Allan, S. A. Belmonte, S. J. Clark, W. I. F. David, P. A. McGregor, S. Parsons, C. R. Pulham, L. Sawyer, Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst Growth Des. 5, 1415–1427 (2005).
  • R. E. Marsh, Refinement of the crystal structure of glycine. Acta Crystallogr. 11, 654–663 (1958).
  • Y. Iitaka, The crystal structure of γ-glycine. Acta Crystallogr. 14, 1–10 (1961).
  • Y. Iitaka, The crystal structure of β-glycine. Acta Crystallogr. 13, 35–45 (1960).
  • Z. Latajka, H. Ratalczak, Molecular orbital calculations for glycine crystals. J Phys Chem. 83, 2785–2787 (1979).
  • E. Seyedhosseini, M. Ivanov, V. Bystrov, I. Bdikin, P. Zelenovskiy, Shur VYa, A. Kudryavtsev, E. D. Mishina, A. S. Sigov, A. L. Kholkin, Growth and nonlinear optical properties of beta-glycine crystals grown on Pt substrates. Cryst Growth Des. 14, 2831–2837 (2014).
  • I. Bdikin, E. Seyedhosseini, B. Singh, A. Heredia, V. Bystrov, J. Gracio, A. L. Kholkin, Piezoelectricity in microcrystals of amino acids via piezoresponse force microscopy. In: Proceedings of 6th International Conference Contemporary Achievements of Bionanoscopy, ( 18-20 June 2012, Moscow State University, Moscow, Russia); 11.
  • A. Heredia, V. Meunier, I. K. Bdikin, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. K. Agarwal, B. G. Sumpter, S. V. Kalinin, A. L. Kholkin, Nanoscale ferroelectricity in crystalline γ-glycine. Adv Funct Mater. 22, 2996–3003 (2012).
  • E. Seyedhosseini, I. Bdikin, A. Heredia, V. Bystrov, V. Meunier, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. Agarwal, B. G. Sumpter, S. V. Kalinin, Nanoscale ferroelectricity in crystalline γ-glycine. In: Abstract Book of Joint ISAF/ECAPD/PFM 2012 Conference, ( July 9-13, (2012), University of Aveiro, Aveiro, Portugal); 201.
  • E. Seyedhosseini, Piezoelectricity and ferroelectricity in amino acid glycine. PhD Thesis. Portugal: University of Aveiro;125 pages (2015).
  • HyperChem 7.5, Tools for Molecular Modeling; HyperChem 8.0, Professional Edition. Gainesville: Hypercube. Inc.; 2010 (2002).
  • V. S. Bystrov, Computational modeling and nanoscale characterization. Bioferroelectricity: peptide nanotubes. Saarbruecken: Lambert Academic Publishing; (2013) (in Russian). (in English: in print 2015).
  • V. S. Bystrov, Molecular modeling and molecular dynamic simulation of polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale. Physica B. 432, 21–25 (2014).
  • V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, A. L. Kholkin, Molecular modelling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J Mol Model. 19, 3591–3602 (2013).
  • AIMPRO Home Page. http://aimpro.ncl.ac.uk/ ( accessed May 12, (2014)).
  • A. K. Tagantsev, L. E. Cross, J. Fousek, Domains in ferroic crystals and thin films. New York: Springer-Verlag; (2010).
  • N. A. Pertsev, R. V. Gainutdinov, Bodnarchuk YaV, T. R. Volk, Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6. J Appl Phys. 117, 034101 (2015).
  • P. Paruch, T. Tybell, J. M. Triscone, Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl Phys Lett. 79, 530–532 (2001).
  • N. A. Pertsev, A. Petraru, H. Kohlstedt, R. Waser, I. K. Bdikin, D. Kiselev, A. L. Kholkin, Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy. Nanotechnology. 19, 375703 (2008).
  • N. A. Pertsev, A. L. Kholkin, Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy. Phys Rev B. 88, 174109 (2013).
  • A. V. Ievlev, D. O. Alikin, A. N. Morozovska, O. V. Varenyuk, E. A. Eliseev, A. L. Kholkin, Shur VYa, S. V. Kalinin, Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano. 9, 769–777 (2015).
  • Shur VYa, A. R. Akhmathanov, M. A. Chuvakova, I. S. Baturin, Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Appl Phys Lett. 105, 152905 (2014).
  • K. Kobayashi, S. Horiuchi, R. Kumai, F. Kagawa, Y. Murakami, Y. Tokura, Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. Phys Rev Lett. 108, 237601 (2012).
  • S. Horiuchi, Y. Tokura, Organic ferroelectrics. Nat Mater. 7, 357–366 (2008).
  • S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, Y. Tokura, Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles. Nat Commun. 3, 2322 (2012).
  • M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, Y. Rosenwaks, Ferroelectric domain breakdown. Phys Rev Lett. 90, 107601 (2003).
  • S. G. Vasilev, D. S. Petukhova, E. A. Dikushina, A. S. Nuraeva, P. Zelenovskiy, T. A. Khazamov, D. Isakov, V. Ya. Shur, A. L. Kholkin, Investigation of the polymorphic phase transition in a single crystal of glycine. In: Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, ( July 14-17, (2014), Ural Federal University, Ekaterinburg, Russia); 141.
  • D. S. Petukhova, S. G. Vasilev, A. S. Nuraeva, P. S. Zelenovskiy, E. Seyedhosseini, D. Isakov, Shur VYa, A. L. Kholkin, Peculiarities of domain structure of β-glycine single crystals. In: Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, ( July 14-17, (2014), Ural Federal University, Ekaterinburg, Russia); 142.
  • T. A. Khazamov, D. S. Petukhova, S. G. Vasilev, A. S. Nuraeva, P. S. Zelenovskiy, E. Seyedhosseini, Shur VYa, A. L. Kholkin, Domain and crystal structure of glycine nanocrystals. In: Abstract Book of the International Conference Piezoresponce Force Microscopy and Nanoscale Phenomena in Polar Materials, ( July 14-17, (2014), Ural Federal University, Ekaterinburg, Russia); 144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.