303
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Electrothermal numerical modeling of multifilamentary conduction in Ta2O5−x /WO3−x bilayer oxides based RRAM

&
Pages 229-240 | Accepted 15 Apr 2016, Published online: 14 Oct 2016

References

  • A. Sawa. Resistive switching in transition metal oxides. Materials today. 11(6), 28–36 (2008 Jun 30).
  • H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek, S. O. Park, Y. N. Hwang, S. H. Lee, Y. T. Kim, K. H. Lee, and U. I. Chung. A novel cell technology using N-doped GeSbTe films for phase change RAM. VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on 2003 Jun 10 (pp. 177–178). IEEE.
  • G. C. Messenger, and F. N. Coppage. Ferroelectric memories: a possible answer to the hardened nonvolatile question. IEEE Transactions on Nuclear Science. (1988 Dec) 35(6), 1461–6.
  • M. Kund, G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm. IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. (2005 Dec 5).
  • M. Durlam, P. Naji, M. DeHerrera, S. Tehrani, G. Kerszykowski, and K. Kyler. Nonvolatile RAM based on magnetic tunnel junction elements. Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International (pp. 130–131). IEEE 2000 Feb 9.
  • T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber. Carbon nanotube-based nonvolatile random access memory for molecular computing. science. 289(5476), 94–7 (2000 Jul 7).
  • P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig. The “Millipede”—More than thousand tips for future AFM storage. IBM Journal of Research and Development. 44(3), 323–40. (2000 May)
  • S. S. Sheu, P. C. Chiang, W. P. Lin, H. Y. Lee, P. S. Chen, Y. S. Chen, T. Y. Wu, F. T. Chen, K. L. Su, M. J. Kao, and K. H. Cheng. A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme. 2009 Symposium on VLSI Circuits (pp. 82–83). IEEE (2009 Jun 16).
  • Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, and Y. Sugiyama. Sub-reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET. IEEE Transactions on Electron Devices. 55(5), 1185–91. (2008 May)
  • M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, and U. I. Chung. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures. Nature materials. 10(8), 625–30 (2011 Aug 1).
  • S. M. Sadaf, X. Liu, M. Son, S. Park, S. H. Choudhury, E. Cha, M. Siddik, J. Shin, and H. Hwang. Highly uniform and reliable resistance switching properties in bilayer WOx/NbOx RRAM devices. physica status solidi (a). 209(6), 1179–83 (2012 Jun 1).
  • J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim, S. Park, and H. Hwang. Diode-less nano-scale ZrO x/HfO x RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications. Electron Devices Meeting (IEDM), 2010 IEEE International (pp. 19–5). IEEE (2010 Dec 6).
  • S. Jung, J. Shin, and H. Hwang. Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications. Applied Physics Letters. 97:172105. (2010).
  • B. Sarkar, B. Lee, and V. Misra. Implications of Lower Zero-Field Activation Energy of Dielectric in Al2O3/HfO2 Bi-Layer Dielectric RRAM Forming Process. ECS Transactions. 64(14), 43–8 (2014 Aug 8).
  • A. Prakash, S. Maikap, C. S. Lai, T. C. Tien, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai. Bipolar resistive switching memory using bilayer TaOx/WOx films. Solid-State Electronics. 77:35–40 (2012 Nov 30).
  • S. Larentis, F. Nardi, S. Balatti, D. C. Gilmer, and D. Ielmini. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Transactions on Electron Devices. Sep;59(9), 2468–75. (2012).
  • S. Kim, S. J. Kim, K. M. Kim, S. R. Lee, M. Chang, E. Cho, Y. B. Kim, C. J. Kim, U. I. Chung, and I. K. Yoo. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific reports. 3:1680 (2013 Apr 22).
  • D. B. Strukov, J. L. Borghetti, and R. S. Williams. Coupled Ionic and Electronic Transport Model of Thin-Film Semiconductor Memristive Behavior. small. 5(9), 1058–63 (2009 May 4).
  • T. Baiatu, R. Waser, and K. H. Härdtl. dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism. Journal of the American Ceramic Society. 73(6), 1663–73 (1990 Jun 1).
  • U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices. Feb;56(2), 186–92. (2009).
  • F. Nardi, S. Larentis, S. Balatti, D. C. Gilmer, and D. Ielmini. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part I: Experimental study. IEEE Transactions on Electron Devices. 59(9), 2461–7. (2012) Sep.
  • J. R. Cannon. The one-dimensional heat equation. Cambridge University Press; 1984 Dec 28.
  • G. A. Niklasson, and C. G. Granqvist. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry. 17(2), 127–56. (2007).
  • N. F. Mott, and R. W. Gurney. Electronic processes in ionic crystals; (1940).
  • C. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, and C. Y. Lu. A highly reliable self-aligned graded oxide WO x resistance memory: conduction mechanisms and reliability. In 2007 IEEE Symposium on VLSI Technology 2007 Jun 12.
  • S. Kim, S. Choi, and W. Lu. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS nano. 8(3), 2369–76 (2014 Feb 28).
  • M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan. Multilevel resistive switching with ionic and metallic filaments. Applied Physics Letters. 94(23), 233106 (2009 Jun 8).
  • D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, and M. Kim. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature nanotechnology. 5(2), 148–53 (2010 Feb 1).
  • S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, and J. S. Kim. Reproducible resistance switching in polycrystalline NiO films. Applied Physics Letters. 85(23), 5655–7 (2004 Dec 6).
  • C. H. Henager, and W. T. Pawlewicz. Thermal conductivities of thin, sputtered optical films. Applied optics. 32(1), 91–101 (1993 Jan 1).
  • H. Wang, Y. Xu, M. Goto, Y. Tanaka, M. Yamazaki, A. Kasahara, and M. Tosa. Thermal conductivity measurement of tungsten oxide nanoscale thin films. Materials transactions. 47(8), 1894–7. (2006).
  • A. Koehl, H. Wasmund, A. Herpers, P. Guttmann, S. Werner, K. Henzler, H. Du, J. Mayer, R. Waser, and R. Dittmann. Evidence for multifilamentary valence changes in resistive switching SrTiO3 devices detected by transmission X-ray microscopy. APL Materials. 1(4), 042102 (2013 Oct 1).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.