146
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Anomalous ferroelectricity in P(VDF70-TrFE30)

, , , , &

References

  • B. Ameduri, From vinylidene fluoride (vdf) to the applications of vdf-containing polymers and copolymers: Recent developments and future trends. Chemical Reviews, 109(12), 6632–6686 (2009).
  • S. B. Lang and S. Muensit, Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A, 85(2), 125–134 (2006).
  • A. J. Lovinger, Ferroelectric polymers. Science, 220(4602), 1115–1121 (1983).
  • V. F. Cardoso, C. M. Costa, G. Minas, and S. Lanceros-Mendez, Improving the optical and electroactive response of poly(vinylidene fluoride–trifluoroethylene) spin-coated films for sensor and actuator applications. Smart Materials and Structures, 21(8), 085020 (2012).
  • Luana Persano, Canan Dagdeviren, Yewang Su, Yihui Zhang, Salvatore Girardo, Dario Pisignano, Yonggang Huang, and John A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications, 4, (2013).
  • Kazuto Takashima, Satoshi Horie, Toshiharu Mukai, Kenji Ishida, and Kazumi Matsushige, Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications. Sensors and Actuators A: Physical, 144(1), 90 – 96 (2008).
  • H. Ohigashi, K. Koga, M. Suzuki, T. Nakanishi, K. Kimura, and N. Hashimoto, Piezoelectric and ferroelectric properties of p (vdf-trfe) copolymers and their application to ultrasonic transducers. Ferroelectrics, 60(1), 263–276 (1984).
  • Sung Sik Won, Mackenzie Sheldon, Nicholas Mostovych, Jiyeon Kwak, Bong-Suk Chang, Chang Won Ahn, Angus I. Kingon, Ill Won Kim, and Seung-Hyun Kim, Piezoelectric poly(vinylidene fluoride trifluoroethylene) thin film-based power generators using paper substrates for wearable device applications. Applied Physics Letters, 107, 202901 (2015).
  • N. Neumann, R. Köhler, and G. Hofmann, Pyroelectric thin film sensors and arrays based on p(vdf/trfe). Integrated Ferroelectrics, 6(1–4), 213–230 (1995).
  • Yusuke Kuroda, Yasuko Koshiba, Masahiro Misaki, Kenji Ishida, and Yasukiyo Ueda, Pyroelectric response of submicron free-standing poly(vinylidene fluoride/trifluoroethylene) copolymer thin films. Applied Physics Express, 6(2), 021601 (2013).
  • R. I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, and W.H. Abd, Majid. Ferroelectric and pyroelectric properties of novel lead-free polyvinylidenefluoride-trifluoroethylene–bi0.5na0.5tio3 nanocomposite thin films for sensing applications. Ceramics International, 41(10, Part A), 13836–13843 (2015).
  • H. Nguyen, A. Navid, and L. Pilon, Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Applied Thermal Engineering, 30(14–15), 2127–2137 (2010).
  • G. Sebald, S. Pruvost, and D. Guyomar, Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Materials and Structures, 17, 1–6 (2008).
  • R. B. Olsen, D.A. Bruno, J.M. Briscoe, and E.W. Jacobs, Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer. Journal of Applied Physics, 57(11), 5036 (1985).
  • Ashcon Navid and Laurent Pilon, Pyroelectric energy harvesting using olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [p(vdf-trfe)] thin films. Smart Materials and Structures, 20(2), 025012 (2011).
  • Xinyu Li, Xiao-Shi Qian, Haiming Gu, Xiangzhong Chen, S. G. Lu, Minren Lin, Fred Bateman, and Q. M. Zhang, Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters, 101(13), (2012).
  • Sumiko Fujisaki, Hiroshi Ishiwara, and Yoshihisa Fujisaki, Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric-insulator-semiconductor diodes. Applied Physics Letters, 90(16), (2007).
  • Ying Hou, Zhaoyue Lü, Tiansong Pu, Yuan Zhang, Guoqiang Xu, and Haisheng Xu, Fast switching protocol for ferroelectric random access memory based on poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films. Applied Physics Letters, 102(6), (2013).
  • Mengyuan Li, Harry J. Wondergem, Mark-Jan Spijkman, Kamal Asadi, Ilias Katsouras, Paul W. M. Blom, and Dago M. de Leeuw, Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nature Materials, 12(5), 433–438 (2013).
  • D. Mao, M.A. Quevedo-Lopez, H. Stiegler, B.E. Gnade, and H.N. Alshareef, Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics. Organic Electronics, 11(5), 925 – 932 (2010).
  • T. Furukawa, G. E. Johnson, H. E. Bair, Y. Tajitsu, A. Chiba, and E. Fukada, Ferroelectric phase transition in a copolymer of vinylidene fluoride and trifluoroethylene. Ferroelectrics, 32(1), 61–67 (1981).
  • Y. Tajitsu, A. Chiba, T. Furukawa, M. Date, and E. Fukada, Crystalline phase transition in the copolymer of vinylidenefluoride and trifluoroethylene. Applied Physics Letters, 36(4), 286–288 (1980).
  • Takeshi Yamada and Toyoki Kitayama, Ferroelectric properties of vinylidene fluoride-trifluoroethylene copolymers. Journal of Applied Physics, 52(11), 6859–6863 (1981).
  • Takeshi Yamada, Toshinobu Ueda, and Toyoki Kitayama, Ferroelectric-to-paraelectric phase transition of vinylidene fluoride-trifluoroethylene copolymer. Journal of Applied Physics, 52(2), 948–952 (1981).
  • Kohji Tashiro and Masamichi Kobayashi, Structural phase transition in ferroelectric fluorine polymers: X-ray diffraction and infrared/raman spectroscopic study. Phase Transitions, 18(3–4), 213–246 (1989).
  • Takeo Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions, 18(3–4), 143–211 (1989).
  • Andrew J. Lovinger, T. Furukawa, G.T. Davis, and M.G. Broadhurst, Crystallographic changes characterizing the curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 1. as-crystallized samples. Polymer, 24(10), 1225–1232 (1983).
  • Andrew J. Lovinger, T. Furukawa, G.T. Davis, and M.G. Broadhurst, Crystallographic changes characterizing the curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. oriented or poled samples. Polymer, 24(10), 1233–1239 (1983).
  • Rinaldo Gregorio and Marcelo Marino Botta, Effect of crystallization temperature on the phase transitions of p(vdf/trfe) copolymers. Journal of Polymer Science Part B: Polymer Physics, 36(3), 403–414 (1998).
  • J. F. Legrand, Structure and ferroelectric properties of p(vdf-trfe) copolymers. Ferroelectrics, 91(1), 303–317 (1989).
  • Kohji Tashiro and Rieko Tanaka, Structural correlation between crystal lattice and lamellar morphology in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers as revealed by the simultaneous measurements of wide-angle and small-angle x-ray scatterings. Polymer, 47(15), 5433–5444 (2006). Morphology of Crystalline Polymers: Dedicated to David Bassett on the Occasion of his Retirement.
  • T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashina, and M. Date, Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers. Journal of Applied Physics, 56(3), 829–834 (1984).
  • E. Bellet-Amalric and J.F. Legrand, Crystalline structures and phase transition of the ferroelectric p(vdf-trfe) copolymers, a neutron diffraction study. The European Physical Journal B - Condensed Matter and Complex Systems, 3(2), 225–236 (1998).
  • Hidekazu Kodama, Yoshiyuki Takahashi, and Takeo Furukawa, Nonlinear dielectric investigation of trifluoroethylene-rich copolymers of vinylidene fluoride. Japanese Journal of Applied Physics, 38(6R), 3589 (1999).
  • G. T. Davis, M. G. Broadhurst, A. J. Lovinger, and T. Furukawa, Hysteresis in copolymers of vinylidene fluoride and trifluoroethylene. Ferroelectrics, 57(1), 73–84 (1984).
  • Hajime Tanaka, Hideyuki Yukawa, and Toshio Nishi, Effect of crystallization condition on the ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (vf2/f3e) copolymers. Macromolecules, 21(8), 2469–2474 (1988).
  • Toshihisa Horiuchi, Kazumi Matsushige, and Tetuo Takemura, Intermediate structure at the ferro-to-paraelectrlymer (54/46 mol. Japanese Journal of Applied Physics, 25(6A), L465 (1986).
  • Kazumi Matsushige, Pressure effect on phase transition in ferroelectic polymers. Phase Transitions, 18(3–4), 247–262 (1989).
  • B. Hilczer, M. Szafranski, and A. Hilczer, Pressure-induced changes in the dielectric response of polymer relaxors. Applied Physics Letters, 100(5), (2012).
  • Kohji Tashiro and Masamichi Kobayashi, Structural study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 4. poling effect on structure and phase transition. Polymer, 27(5), 667–676 (1986).
  • Randall B. Olsen, David A. Bruno, Joseph M. Briscoe, and Everett W. Jacobs, High electric field resistivity and pyroelectric properties of vinylidene fluoride-trifluoroethylene copolymer. Journal of Applied Physics, 58(8), 2854–2860 (1985).
  • Stephen Ducharme, A. V. Bune, L. M. Blinov, V. M. Fridkin, S. P. Palto, A. V. Sorokin, and S. G. Yudin, Critical point in ferroelectric langmuir-blodgett polymer films. Phys. Rev. B, 57, 25–28 (Jan 1998).
  • Matt Poulsen, A. V. Sorokin, S. Adenwalla, Stephen Ducharme, and V. M. Fridkin, Effects of an external electric field on the ferroelectric-paraelectric phase transition in polyvinylidene fluoride-trifluoroethylene copolymer langmuir–blodgett films. Journal of Applied Physics, 103(3), (2008).
  • Yoshiro Tajitsu, Toshiya Masuda, and Takeo Furukawa, Switching phenomena in vinylidene fluoride / trifluoroethylene copolymers near the curie point. Japanese Journal of Applied Physics, 26(10R), 1749 (1987).
  • Topas, General Profile and Structure Analysis Software for Powder Diffraction Data V4.2. Bruker AXS GmbH, Karlsruhe, Germany, 2009.
  • R. W. Cheary and A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25(2), 109–121 (Apr 1992).
  • L.E. Garn and E.J. Sharp, Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. Part I. Theory. Journal of Applied Physics, 53(12), 8974 (1982).
  • R. Jiménez and B Jiménez, Pyroelectricity in Polycrystalline Ferroelectrics. In Multifunctional Polycrystalline Ferroelectric Materials, pages 573–616. Springer Netherlands, Dordrecht, 2011.
  • L. B. Schein, P. J. Cressman, and L. E. Cross, Electrostatic measurements of unusually large secondary pyroelectricity in partially clamped LiNbO3. Ferroelectrics, 22(1), 937–943 (1978).
  • L. B. Kong, T. Li, H. H. Hng, F. Boey, T. Zhang, and S. Li, Waste Energy Harvesting. Springer, 2014.
  • M. Jimbo, T. Fukada, H. Takeda, F. Suzuki, K. Horino, K. Koyama, S. Ikeda, and Y. Wada, Ferroelectric Switching Characteristics of 73/27 Copolymer of Vinylidene Fluoride and Trifluoroethylene. Journal of Polymer Science: Part B: Polymer Physics, 24, 909–921 (1986).
  • R.W. Whatmore, O. Molter, and C.P. Shaw, Electrical properties of sb and cr-doped pbzro3–pbtio3–pbmg1/3nb2/3o3 ceramics. Journal of the European Ceramic Society, 23(5), 721–728 (2003).
  • Shashi Poddar and Stephen Ducharme, Temperature dependence of flexoelectric response in ferroelectric and relaxor polymer thin films. Journal of Applied Physics, 116(11), (2014).
  • Kenji Omote, Hiroji Ohigashi, and Keiko Koga, Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’ films of vinylidene fluoride trifluoroethylene copolymer. Journal of Applied Physics, 81(6), 2760–2769 (1997).
  • Masashi Jimbo, Tomohiro Fukada, Hiromi Takeda, Fuminao Suzuki, Kaoru Horino, Kiyohito Koyama, Susumu Ikeda, and Yasaku Wada, Ferroelectric switching characteristics of 73/27 copolymer of vinylidene fluoride and trifluoroethylene. Journal of Polymer Science Part B: Polymer Physics, 24(4), 909–921 (1986).
  • K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers (iii) dependence of transitional behavior on vdf molar content. Ferroelectrics, 57(1), 297–326 (1984).
  • G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, Electric-field-induced phase changes in poly(vinylidene fluoride). Journal of Applied Physics, 49(10), 4998–5002 (1978).
  • L. Pintilie and M Alexe, Ferroelectric-like hysteresis loop in nonferroelectric systems. Applied Physics Letters, 87(11), 112903 (2005).
  • G.M. Sessler and K. Shahi, Electrets, Topics in Applied Physics, volume 33. Springer-Verlag, 1980.
  • R.B. Olsen, D.A. Bruno, J.M. Briscoe, and J. Dullea, Cascaded pyroelectric energy converter. Ferroelectrics, 59, 205–2019 (1984).
  • E. J. Sharp and L. E. Garn, Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part ii: Experiment. Journal of Applied Physics, 53(12), 8980–8987 (1982).
  • A. M. Glass, Dielectric, thermal, and pyroelectric properties of ferroelectric litao3. Physical Review, 172(2), 564–571 (1968). X
  • M. E. Lines and A. M. Glass, Primary pyroelectric effect in litao3. Physical Review Letters, 39, 1362 (1977). X
  • H. Wang and M. Wang, The piezoelectric, pyroelectric, dielectric and elastic properties of single crystal linb0.1ta0.9o3. Journal of Crystal Growth, 79, 527–529 (1986). X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.