335
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Optical, electronic, and elastic properties of some A5B6C7 ferroelectrics (A=Sb, Bi; B=S, Se; C=I, Br, Cl): First principle calculation

, , &
Pages 22-34 | Received 19 Jun 2016, Accepted 27 Mar 2017, Published online: 01 Aug 2017

References

  • E. I. Gerzanich and V. M. Fridkin, Segnetoelektrikitipa A5B6C7. Nauka, Moskwa p. 114 1982.
  • J. Fenner, A. Rabenau, and G. Trageser, Adv. Inorg. and Radiochemistry V. 23, Acad. Press. New York, pp. 329–416 1980.
  • B. A. Popovkin, Physico-chemical fundamentals of the control synthesis of sulpho-iodide of antimony and other chalcogeno-(oxo)-halogenides of antimony and bismuth. Doctoral thesis, M: MSU, p. 349 1983.
  • V. V. Soboley, E. V. Pesterev, and V. V. sobolev, Dielectric permittivity of BiTeI. Inorg Mater. 40, 128–129 (2004).
  • M. B. Babanly, J. C. Tedenac, Z. S. Aliyev, and D. V. Balitsky, Phase equilibriums and thermodynamic properties of the system Bi-Te-I. J of Alloys and Comp. 481, 349–353 (2009).
  • K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeCl. Nat Mater. 10, 521–526 (2011).
  • S. V. Eremeev, I. A. Nechaev, Y. M. Koroteev, P. M. Echenique, and E. V. Chulkov, Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: surfaces of bismuth tellurohalides. Phys Rev Lett. 108, 246802 (2012). 1–5.
  • H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of berry's phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).
  • S. Fiedler, T. Bathon, S. V. Eremeev, O. E. Tereshchenko, K. A. Kokh, E. V. Chulkov, P. Sessi, H. Bentmann, M. Bode, and F. Reinert, Termination-dependent surface properties in the giant-Rashba semiconductors BiTeX (X = Cl, Br, I). Phys Rev B. 92, 235430.1–10 (2015).
  • H. L. Zhuang, V. R. Cooper, H. Xu, P. Ganesh, R. G. Hennig, and PRC Kent, Rashba effect in single layer antimony telluroiodide SbTeI. Phys Rev B. 92, 115302 (2015). 1–5.
  • S. Datta and B. Das, Electronic analog of the electro‐optic modulator. Appl Phys Lett. 56, 665–667 (1990).
  • A. Crepaldi, L. Moreschini, G. Autes, C. Tournier-Colletta, S. Moser, N. Virk, H. Berger, P. Bugnon, Y. J. Chang, K. Kern, A. Bostwick, E. Rotenberg, O. V. Yazyev, and M. Grioni, Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys Rev Lett. 109, 096803 (2012). 1–5.
  • G. Landolt, S. V. Eremeev, Y. M. Koroteev, B. Slomski, S. Muff, T. Neupert, M. Kobayashi, V. N. Strocov, T. Schmitt, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, E. V. Chulkov, J. Osterwalder, and J. H. Dill, Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI. Phys Rev Lett. 109, 116403 (2012).
  • M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors. Phys Rev Lett. 110, 107204.1–5 (2013).
  • A. Akrap, J. Teyssier, A. Magrez, P. Bugnon, H. Berger, A. B. Kuzmenko, D. van der Marel, Optical properties of BiTeBr and BiTeCl. Phys Rev B. 90, 035201.1–6 (2014).
  • L. Moreschini, G. Autès, A. Crepaldi, S. Moser, J. C. Johannsen, K. S. Kim, H. Berger, P. Bugnon, A. Magrez, J. Denlinger, E. Rotenberg, A. Bostwick, O. V. Yazyev, and M. Grioni, Bulk and surface band structure of the new family of semiconductors BiTeX (X = I, Br, Cl). J of Electron Spectroscopy and Related Phenomena 201, 115–120 (2015).
  • H. K. Dubey, L. P. Deshmukh, D. E. Kshirsagar, M. Sharon, and M. Sharon, Synthesis and study of electrical properties of SbTeI. Advances in Physical Chemistry 2014, 1–6 (2014).
  • G. Landolt, S. V. Eremeev, O. E. Tereshchenko, S. Muff, B. Slomski, K. A. Kokh, M. Kobayashi, T. Schmitt, V. N. Strocov, J. Osterwalder, E. V. Chulkov, and J. H. Dil, Bulk and surface Rashba splitting in single termination BiTeCl. New J of Phys. 15, 085022.1–11 (2013).
  • V. A. Kulbachinskii, V. G. Kytin, Z. V. Lavrukhina, A. N. Kuznetsov, and A. V. Shevelkov, Galvanomagnetic and thermoelectric properties of BiTeBr and BiTeI single crystal and their electronic structure. Semiconductors 44, 1548–1553 (2010).
  • Y. Ma, Y. Dai, W. Wei, X. Li, and B. Huang, Emergence of electric polarity in BiTeX (X = Br and I) monolayers and the giant Rashba spin splitting. Phys Chem Chem Phys. 16, 17603–17609 (2014).
  • Z. Zhu, Y. Cheng, and Schwingenschlögl U: Orbital-dependent Rashba coupling in bulk BiTeCl and BiTeI. New J of Phys. 15, 023010.1–10 (2013).
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys Rev B. 47, 558–561 (1993).
  • J. Kresse G andFurthmüller, Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 6, 15–50 (1996).
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 59, 1758–1775 (1999).
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys Rev B. 54, 11169–11186 (1996).
  • P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys Rev. 136, A1133–A1138 (1964).
  • J. P. Perdew and S. Burke, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 77, 3865–3868 (1996).
  • H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations. Phys Rev B. 13, 5188–5192 (1976).
  • A. Shevelkov, E. Dikarev, R. Shpanchenko and B. Popovkin, Crystal structures of bismuth tellurohalides BiTeX(X = Cl, Br, I) from X-Ray powder diffraction data. J Solid State Chem. 114, 379–384 (1995).
  • S. G. Kılıç and Ç Kılıç, Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: A dispersion-corrected density-functional study. Phys Rev B. 91, 2452041–12 (2015).
  • J. S. Lee, GAH Schober, M. S. Bahramy, H. Murakawa, Y. Onose, R. Arita, N. Nagaosa, and Y. Tokora, Optical Response of Relativistic Electrons in the Polar BiTeI Semiconductor. Phys Rev Lett. 107, 117401.1–5 (2011).
  • M. Skano, J. Miyawaki, A. Chainani, Y. Takata, T. Sonobe, T. Shimojima, M. Oura, S. Shin, M. S. Bahramy, R. Arita, N. Nagaosa, H. Murakawa, Y. Kaneko, Y. Tokura, and K. Ishizaka, Three-dimensional bulk band dispersion in polar BiTeI with giant Rashba-type spin splitting. Phys Rev B. 86, 085204 (2012).
  • S. Zhou, J. Long and W. Huang, Theoretical prediction of the fundamental properties of ternary bismuth tellurohalides. Materials Sciences in Semiconductors Processing 27, 605–610 (2014).
  • J. A. Sans, F. J. Manjon, ALJ Pereira, R. Vilaplana, O. Gomis, A. Segura, A. Munoz, P. Rodriguez-Hernandez, C. Popescu, C. Drasar, and P. Rulevas, Structural, vibrational, and electrical study of compressed BiTeBr. Phys Rev B. 93, 024110.1–11 (2016).
  • J. Jamimovic, X. Mettan, A. Pisoni, R. Gaal, S. Katrych, L. Demko, A. Akrap, L. Forro, H. Berger, P. Bugnon, and A. Magrez, Enhanced low-temperature thermoelectrical properties of BiTeCl grown by topotactic method. ScriptaMaterialia 76, 69–72 (2014).
  • A. G. Papazoglou and P. J. Rentzeperis, The Crystal structure of antimony telluroiodide, SbTeI. Zeitschrift für Kristallographie 165, 159–167 (1983).
  • F. Demartin, C. Gramaccioli, and I. Campostrini, Demichelete-(I), BiSI, a new mineral from la fossa crater, Vulcano, Aeolian Islands, Italy. Mineral. Mag. 74, 141–145 (2010).
  • A. M. Ganose, K. T. Butler, A. Walsh, and D. O. Dcanlon, Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J Mater Chem A. 4, 2060–2068 (2016).
  • A. Audzijonis, R. Zaltauskas, R. Sereika, L. Zigas, and A. Reza, Electronic structure and optical properties of BiSI crystal. J of Phys and Chems of Solids 71, 884–891 (2010).
  • S. A. Park, M. Y. Kim, J. Y. Lim, B. S. Park, J. D. Koh, and W. T. Kim, Optical Properties of Undoped and V-Doped VA−VIA−VIIA Single Crystals. Phys Status Solidi (b) 187, 253–260 (1995).
  • Y. a. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys Rev B. 63, 174103.1–174103.8 (2001).
  • J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry. J Appl Phys. 50, 6290–6295 (1979).
  • J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J Appl Phys. 51, 1520–1524 (1980).
  • J. P. Watt, L. Peselnick, Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Appl Phys. 51, 1525–1531 (1980).
  • J. F. Nye, Physical properties of crystals. Oxford, Oxford University Press, 1985.
  • Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Lui, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B. 76, 054115.1–15 (2007).
  • W. Voight, Lehrbook der kristallphysik Leipsig. Teubner, p. 962 1928.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitatsbedingung für Einkristalle. Z Angew Math Mech. 9, 49–58 (1929).
  • R. Hill, The elastic behavior of crystalline aggregate. Proc Phys Soc London Sect A. 65, 349–354 (1952).
  • V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3. Phys Stat Sol (RRL). 3, 89–91 (2007).
  • H. Koc, A. Yildirim, E. Tetik, and E. Deligoz, Ab initio calculation of the structural, elastik, electronic, and linear optical properties of ZrPtSi and TiPtSi ternary compounds. Computational Materials Science 62, 235–242 (2012).
  • A. L. Shein IR andIvanovskii, Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J Phys Considens Matter. 20, 415218.1–415218.9 (2008).
  • F. Pogh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 45, 823–843 (1954).
  • H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput Mater Sci. 44, 774–778 (2008).
  • V. Tvergaard and J. W. Hutchinson, Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy. J Am Chem Soc. 71, 157–166 (1988).
  • SIand Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index. Phys Rev Lett. 101, 055504 (2008).
  • I. Johnston, G. Keeler, R. Rollins, and S. Spicklemire, Solids state physics simulations, the consortium for upper level physics software. Wiley, New York, 1996.
  • O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 24, 909–917 (1963).
  • E. Schreiber, O. L. Anderson, and N. Soga, Elastic constants and their measurements. McGraw-Hill, New York, 1973.
  • D. A. McGill TC andCollins, Prospect for the future of narrow band gap materials. Semicond Sci Technol. 8, 51–53 (1993).
  • S. Krishnamurthy, A. B. Chen, and A. Sher, Near band edge absorption spectra of narrow gap III-V semiconductors alloys. J Appl Phys. 80, 4045–4048 (1996).
  • H. R. Philipp and H. Ehrenreich, Optical properties of semiconductors. Phys Rev. 129, 1550–1560 (1963).
  • H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozışık, First principle prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Science 14, 1211–1220 (2012).
  • H. Koc, H. Ozisik, E. Deligoz, A. M. Mamedov, and E. Ozbay, Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling. 20, 1–12 (2014).
  • L. Marton, Experiments on low-energy electron scattering and energy losess. Rev Mod Phys. 28, 172–183 (1956).
  • O. V. Kovalev, Representations of the crystallographic space groups. Irreducible representations induced representations and corepresentations. Amsterdam: Gordon and Breach; 1965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.