180
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Electrical properties of sodium potassium niobate/mullite ceramic composites

, , , , , & show all
Pages 104-113 | Received 19 Jun 2016, Accepted 27 Mar 2017, Published online: 01 Aug 2017

References

  • A. Sedaghat, E. T. Nassaj, G. D. Soraru and T. Ebadzadeh, A comparative study of microstructural development in the sol-gel derived alumina-mullite nanocomposites using colloidal silica and tetraethyl orthosilicate, J. Sol-Gel. Sci. Technol. 58, 689–697 (2011).
  • J. Anggono, Mullite ceramic: its properties, structure, and synthesis, J. Tek Mesin 7, 1–10 (2005).
  • H. Zipkin, L. Israel, S. Guler and C. Guler, Dielectric properties of sodium fluoride added kaolinite at different firing temperatures, Ceram. Int. 33, 663–667 (2007).
  • A. Kool, P. Thakur, B. Bagchi, N. A. Hoque and S. Das, Mechanical, dielectric and photoluminescence properties of alumina−mullite composite derived from natural Ganges clay, Appl. Clay Sci. 114, 349–358 (2015).
  • C. Y. Chen, G. S. Lan and W. H. Tuan, Microstructural evolution of mullite during the sintering of kaolin powder compacts, Ceram. Int. 26, 715–720 (2000).
  • H. S. Tripathi, A. Ghose, M. K. Halder, B. Mukherjee and H. S. Maiti, Microstructure and properties of sintered mullite developed from Indian bauxite, Bull. Mater. Sci. 35, 639–643 (2012).
  • M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida and A. Caballero, XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures, J. Eur. Ceram. Soc. 20, 403–412 (2000).
  • B. M. Kim, Y. K. Cho, S. Y. Yoon, R. Stevens and H. C. Park, Mullite whiskers derived from kaolin, Ceram. Int. 35, 579–583 (2009).
  • V. Viswabaskaran, F. D. Gnanam and M. Balasubramanian, Mullitisation behaviour of calcined clay-alumina mixtures, Ceram. Int. 29, 564–571 (2003).
  • D. Gao, K. W. Kwok, D. Lin and H. L. W. Chan, Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics, J Mater Sci 44, 2466–2470 (2009).
  • Y. Guo, K. I. Kakimoto and H. Ohsato, Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics, Solid State Commum. 129, 279–284 (2004).
  • B. Jaffe, Piezoelectric Ceramics. Academic Press, 214–217 (1971).
  • L. E. Cross, Electric double hysteresis in (KxNa1-x)NbO3 single crystals, Nature 181, 178–179 (1958).
  • Y. Guo, K. Kakimoto and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett. 85, 4121–4123 (2004).
  • J. Minhong, D. Manjiao, L. Huaxin, W. Shi and L. Xinyu, Piezoelectric and dielectric properties of K0.5Na0.5NbO3-LiSbO3-BiScO3 lead-free piezoceramics, Mater. Sci. Eng. B. 176, 167–170 (2011).
  • N. Jiang, B. Fang, Q. Du, and L. Zhou, Effects of the second component on the structure and electrical properties of Na1/2K1/2NbO3−based lead-free piezoelectric ceramic, Ferroelectric. 413, 73–83 (2011).
  • I. Coondoo, N. Panwar and A. Kholkin, Lead-free piezoelectrics: Current status and perspectives, J. Adv. Dielectric. 3, 1330002 (2013).
  • D. J. Chen and M. J. Mayo, Rapid rate sintering of nanicrystalline ZrO2−3 mol% Y2O3, J. Am. Ceram. Soc. 79, 906–912 (1996).
  • N. Lartcumfu, C. Kruea-In, N. Tawichai and G. Rujijanagul, Fabrication of sodium potassium niobate ceramics by two step sintering assisted molten salts synthesis, Ferroelectrics. 456: 1, 14–20 (2013).
  • J. Fang, X. Wang, Z. Tian, C. Zhong, and L. Li, Two-Step sintering: an approach to broaden the sintering temperature range of alkaline niobate-based lead-free piezoceramics, J. Am. Ceram. Soc. 93, 3552–3555 (2010).
  • A. See, J. Hassan, M. Hashim and W. M. D. W Yusoff, Dielectric variation of barium titanate additions on mullite−kaolinite sample, J. Solid State Sci. Technol. 16, 197–204 (2008).
  • K. Chen, Y. P. Pu and J. K. Liu, Crystal structure and dielectric properties of barium titanate−kaolinite composite, Ceram. int. 38S, S101–S104 (2012).
  • A. see, J. Hassan, M. Hashim, A.H. Shaari and W.M.D.W Yusoff, Dielectric properties of strontium titanate filled mullite composites at 10 Hz-1 MHz, J. Solid State Sci. Technol. 17, 182–188 (2009).
  • N. Lertcumfu, K. Pengpat, S. Eitssayeam, T. Tunkasiri and G. Rujijanagul, Electrical properties of BZT/mullite ceramic composites, Ceram. Int. 41, 447–152 (2015).
  • Y. J. Dai, X. W. Zhang and K. P. Chen, Morphotopic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramic, Appl. Phys. Lett. 94, 042905 (2009).
  • L. Wang, M. Becidan and O. Skreiberg, Testing of zeolite and kaolin for preventing ash sintering and fouling during biomass combustion, Chem. Eng. Trans. 35, 1159–1164 (2013).
  • P. Yongsiri, S. Eitssayeam, G. Rujijanagul, S. Sirisoonthorn, T. Tunkasiri and K. Pengpat, Fabrication of transparent lead-free KNN glass ceramics by incorporation method, Nano. Res. Lett. 7, 136 (2012).
  • C. Xin, H. Shifeng and C. Jun, Piezoelectric, dielectric, and ferroelectric properties of 0–3 ceramic/cement composites, J. Appl. Phys. 101, 094110 (2007).
  • A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Application, Chapman and Hall Press, New York, 1996.
  • M. Kosec, B. Malič, A. Benčan and T. Rojac, Piezoelectric and Acoustic Materials for Transducer Applications: KNN-Based Piezoelectric Ceramics, Springer US, 81–102, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.