216
Views
6
CrossRef citations to date
0
Altmetric
Conference Papers

Adapting BaTiO3-based relaxor ferroelectrics for electrocaloric application

&
Pages 1-7 | Received 21 Aug 2016, Accepted 12 Dec 2016, Published online: 09 Oct 2017

References

  • M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci. 57, 980–1009 (2012).
  • G. Suchaneck, and G. Gerlach, Materials and device concepts for electrocaloric refrigeration. Phys Scr. 90, 094020 (6pp) (2015).
  • J. McPherson, J.-Y. Kim, A. Shanware, and H. Mogul, Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl Phys Lett. 82, 2121–2123 (2003).
  • G. Suchaneck, and G. Gerlach, Lead-free relaxor ferroelectrics for electrocaloric cooling. Mater Today: Proc. 3, 622–631 (2016).
  • G. A. Smolenskii, and V. A. Isupov, Segnetoelektricheskie svoistva tverdykh rastvorov stannata bariya v titanate bariya. Zh Tekh Fiz. 24, 1375–1386 (1954).
  • L. E. Cross, Relaxor ferroelectrics. Ferroelectrics. 76, 241–267 (1987).
  • Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J Appl Phys. 92, 2655–2657 (2002).
  • A. A. Bokov, and Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics. J Adv Diel. 2, 1241010 (24pp) (2012).
  • G. Suchaneck, and G. Gerlach, Electrocaloric cooling based on relaxor ferroelectrics. Phase Trans. 88, 333–341 (2015).
  • Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union. 54, 88–110 (2011).
  • V. V. Svartsman, and D. C. Lupascu, Lead-free relaxor ferroelectrics. J Am Ceram Soc. 95, 1–26 (2012).
  • V. A. Isupov, Nature of physical phenomena in ferroelectric relaxors. Phys Solid State. 45, 1107–1111 (2003).
  • C. C. Laulhé, F. Hippert, J. Kreisel, M. Maglione, A. Simon, J. L. Hazemann, and V. Nassif, EXAFS study of lead-free relaxor ferroelectric BaTi1-xZrxO3 at the Zr K edge. Phys Rev B. 74, 014106 (12pp) (2006).
  • A. R. Akbarzadeh, S. Prosandeev, E. J. Walter, A. Al-Barakaty, and L. Bellaiche, Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. Phys Rev Lett. 108, 257601 (5pp) (2012).
  • V. Bruscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajovi, and Y. Ren, Average and local atomic-scale structure in BaZrxTi1-xO3 (x = 0.10, 0.20, 0.40) ceramics by high-energy X-ray diffraction and Raman spectroscopy. J Phys: Condens Matter. 26, 065901 (13pp) (2014).
  • J. Petzelt, D. Nuzhnyy, V. Bovtun, M. Kempa, M. Savinov, S. Kamba, and J. Hlinka, Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors - comparison with lead-based relaxors. Phase Trans. 88, 320–332 (2015).
  • J. Ravez, and A. Simon, Temperature and frequency dielectric response of ferroelectric ceramics with composition Ba(Ti1-xZrx)O3. Eur J Solid State Inorg Chem. 34, 1199–1209 (1997).
  • A. Simon, R. Ravez, and M. Maglione, The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J Phys: Condens Matter. 16, 963–970 (2004).
  • C. Lei, A. A. Bokov, and Z.-G. Ye, Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3-BaSnO3 system. J Appl Phys. 101, 084105 (9pp) (2007).
  • S. Anwar, P. R. Sagdeo, and N. P. Lalla, Crossover from classical to relaxor ferroelectrics in BaTi1-xHfxO3 ceramics. J Phys: Condens Matter. 18, 3455–3468 (2006).
  • S. Anwar, P. R. Sagdeo, and N. P. Lalla, Locating the normal to relaxor phase boundary in Ba(Ti1-xHfx)O3 ceramics. Mater Res Bull. 43, 1761–1769 (2008).
  • A. Chen, Y. Zhi, J. Zhi, P. M. Vilarinho, and J. L. Baptista, Synthesis and characterization of Ba(Ti1-xCex)O3 ceramics. J Eur Ceram Soc. 17, 1217–1221 (1997).
  • L. P. Curecheriu, D. Deluca, Z. V. Mocanu, M. V. Pop, V. Nica, N. Horchidan, M. T. Buscaglia, V. Buscaglia, M. van Bael, A. Hardy, and L. Mitoseriu, Investigation of the ferroelectric–relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study. Phase Trans. 86, 703–714 (2013).
  • S. Broadbent, and J. Hammersly, Percolation processes I: Crystals and mazes. Math Proc Camb Phil Soc. 53, 629–641 (1957).
  • J. Wang, Z. Zhou, W. Zhang, T. M. Garoni, and Y. Deng, Bond and site percolation in three dimensions. Phys Rev E. 87, 052107 (8pp) (2013).
  • C. Laulhé, A. Pasturel, F. Hippert, and J. Kreisel, Random local strain effects in homovalent-substituted relaxor ferroelectrics: A first-principles study of BaTi0.74Zr0.26O3. Phys Rev B. 82, 132102 (4pp) (2010).
  • W. Kleemann, S. Miga, Z. K. Xu, S. G. Lu, and J. Dec, Non-linear permittivity study of the crossover from ferroelectric to relaxor and cluster glass in BaTi1-xSnxO3 (x = 0.175–0.30). Appl Phys Lett. 104, 182910 (4pp) (2014).
  • D. C. Sinclair, and J. P. Attfield, The influence of A-cation disorder on the Curie temperature of ferroelectric ATiO3 perovskites. Chem Commun. 16, 1497–1498 (1999).
  • P. S. R. Krishna, D. Pandey, V. S. Tiwari, R. Chakravarthy, and B. A. Dasannacharya, Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: A Rietveld analysis. Appl Phys Lett. 62, 231–233 (1993).
  • P. Victor, R. Ranjith, and S. B. Krupanidhi, Normal ferroelectric to relaxor behavior in laser ablated Ca-doped barium titanate thin films. J Appl Phys. 94, 7702–7709 (2003).
  • I. Levin, E. Cockayne, V. Krayzman, J. C. Woicik, S. Lee, and C. A. Randall, Local structure of Ba(Ti,Zr)O3 perovskite-like solid solutions and its relation to the band-gap behavior. Phys Rev B. 83, 094122 (8pp) (2011).
  • J. N. Lin, and T. B. Wu, Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions. J Appl Phys. 68, 985–993 (1990).
  • S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys Rev. 172, 551–553 (1968).
  • J. R. Tessman, A. H. Kahn, and W. Shockley, Electronic polarizabilities of ions in crystals. Phys Rev. 92, 890–895 (1953).
  • H. Bilz, G. Benedek, and A. Bussmann-Holder, Theory of ferroelectricity: The polarizability model. Phys Rev B. 35, 4840–4849 (1987).
  • R. S. Roth, Classification of perovskite and other ABO3-type compounds. J Res Nat Bureau Stand. 58, 75–88 (1957).
  • D. Hennings, A. Schnell, and G. Simon, Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J Am Ceram Soc. 65, 539–544 (1982).
  • E. V. Colla, E. Y. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, Low-frequency dielectric response of PbMg1/3Mn2/3O3. J Phys Condens. Matter. 4, 3671–3677 (1992).
  • J. Toulouse, F. Jiang, and O. Svitelskiy, Temperature evolution of the relaxor dynamics in Pb(Zn1/3Nb2/3)O3: A critical Raman analysis. Phys Rev B. 72, 184106 (12pp) (2005).
  • B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul´kin, E. Mojaev, and M. Roth, Intermediate temperature scale T* in lead-based relaxor systems. Phys Rev B. 80, 064103 (6pp) (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.