116
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Structural and dielectric properties of Ca0.95 Nd0.05Cu3Ti3.95Zr0.05O12 ceramic

, , , , , & show all
Pages 156-166 | Received 07 Nov 2016, Accepted 06 Jun 2017, Published online: 07 Nov 2017

References

  • M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151, 323–325 (2000).
  • M. A. Subramanian, and A. W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskite: high dielectric constants and valency degeneracy, Solid State Sci. 4, 347–351 (2002).
  • S. Rani, N. Ahlawat, R. Punia, R. S. Kundu and N. Ahlawat, Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic, AIP Conf. Proc. 1731, 050004 (2016).
  • H. Wang, S. Li, J. He, C. Lin, Dielectric properties of CaCu3Ti4O12 ceramic: effect of high purity nanometric powders, J. Mater Sci.: Mater. Electron. 25, 1842–1847 (2014).
  • C. Kai, L. Wei, L. Yun-Fei, B. Peng, L. Xiao-Mei, and Z. Jin-Song, Investigation of the size effect on giant dielectric constant of CaCu3Ti4O12 ceramic, Chin. Phys. Lett. 21, 1815–1818 (2004).
  • R. Singh, and R. K. Ultrich, High and low dielectric constant materials, Electrochem.Sc. Interface 8, 26–30 (1999).
  • Y. Wang, L. Ni, and X. M. Chen, Effect of Nd substitution on microstructure and dielectric characteristics of CaCu3Ti4O12 ceramics, J. Mater. Sci: Mater. Electron. 22, 345–350 (2011).
  • C. C. Wang, and L. W. Zhang, Polaron relaxation related to localized charge carriers in CaCu3Ti4O12, Appl. Phys. Lett. 90, 142905–142908 (2007).
  • Y. Zhu, J. C. Zheng, L. Wu, A. I. Frenkel, J. Hanson, P. Northrup, and W. Ku, Nanoscale disorder in CaCu3Ti4O12: A new route to the enhance dielectric response, Phys. Rev. Lett. 99, 037602–037606 (2007).
  • L. Zhang, and Z. J. Tang, Polaron relaxation and variable –range- hopping conductivity in the giant –dielectric-constant material CaCu3Ti4O12, Phys. Rev. B. 70, 174306–174312 (2004).
  • J. Rodrıguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B. 192, 55–69 (1993).
  • S. P. Pavunny, A. Kumar, P. Misra, J. F. Scott, R. S. Katiyar, Properties of the new electronic device material LaGdO3, Phys. Status Solidi B. 251, 131–139 (2014).
  • M. D. Graff, and M. E. Mchenry. Structure of Materials. Cambridge University Press, 2007.
  • M. Sindhu, N. Ahlawat, S. Sanghi, A. Agarwal, R. Dahiya and N. Ahlawat, Rietveld refinement and impedance spectroscopy of calcium titanate, Curr. Appl. Phys. 12, 1429–1435 (2012).
  • L. C. Wang, Z. -H. Wang, S. L. He, X. Li, P. T. Lin, J. R. Sun, and B. G. Shen, Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol-gel derived nanoparticles, Physica B. 407, 1196–1202 (2012).
  • S. Wagner, D. Kahraman, H. Kungel, M. J. Hoffmann, C. Schuh, K. Lubitz, H. Murmann-Biesenecker, and J. A. Schmid. Effect of temperature on grain size, phase composition, and electrical properties in relaxor-ferroelectric-system Pb(Ni1/3,Nb2/3)O3-Pb(Zr,Ti)O3, J. Appl. Phys. 98, 024102–024109 (2005).
  • S. Kazhugasalamoorthy, P. Jegatheesan, R.Moha doss, N. V. Giridharan, B. Karthikeyan, R. Joseyphus, and S. Dhanuskodi, Investigation of the properties of the pure and rare earth modified bismuth ferrite ceramics, J. Alloys Compd. 493, 569–572 (2010).
  • H. Hsing, and F. S. Yen, Effect of crystallite size on the ferroelectric domains growth of ultrafine BaTiO3 powders, J. Am. Ceram. Soc. 79, 1053–1060 (1996).
  • J. J. Mohamed, S. D. Hutagalung, M. F. Ain, K. Deraman, and Z. A. Ahmad, Microstructure and dielectric properties of CaCu3Ti4O12 ceramic, Mater. Lett. 61, 1835–1838 (2007).
  • D. W. Kim, T. G. Kim, and F. S. Hong, Low firing of Cuo-doped anatase, Mater. Res. Bull. 34, 771–781 (1999).
  • C. L.Huang, and Y. C.Chen. Low temperature sintering and microwave dielectric properties of SmAlO3 ceramic, Mater. Res. Bull. 37, 563–574 (2002).
  • L. Singh, U. S. Rai, A. K. Rai, and K. D. Mandal, Sintering effect on dielectric properties of Zn-doped CaCu3Ti4O12 ceramic synthesized by modified sol-gel route, Elect. Mater. Letts. 9, 107–113 (2013).
  • S. Sharma, S. S. Yadav, M. M. Singh, and K. D. Manda, Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic, J. Adv. Dielect. 4, 1450030–1450037 (2014).
  • W. Q. Ni, X. H. Zheng, and J. C. Yu, Sintering effect on structure and dielectric properties of dielectrics CaCu3Ti4O12, J. Mater. Sci. 42, 1037–1041 (2007).
  • P. Sharma, P. Kumar, R. S. Kundu, J. K. Juneja, N. Ahlawat, and R. Punia, Rietveld refinement and dielectric properties of substituted barium titanate for capacitor applications, Ceram. Int. 41, 13425–13432 (2015).
  • I. Norezan, A. K. Yahya, and M. K. Talari, Effect of (Ba0.6Sr0.4)TiO3(BST) doping on dielectric properties of CaCu3Ti4O12(CCTO), J. Mater. Sci. Technol. 28, 1137–1144 (2012).
  • H. Yu, H. Liu, H. Hao, D. Luo, and M. Cao, Dielectric properties of CaCu3Ti4O12 ceramic modified by SrTiO3, Mater. Lett. 62, 1353–1355 (2008).
  • L. Fang, M. Shen, and Z. Li, Effect of double-sided CaTiO3 buffer layors on the electrical properties of CaCu3Ti4O12 films on Pt/Ti/SiO2/Si substrates, J. Appl. Phys. 100, 104101–104105 (2006).
  • R. Kumar, M. Zulfequar, V. N. Singh, J. S. Tawale, and T. D. Senguttuvan, Microwave sintering of dielectric CaCu3Ti4O12: An interfacial conductance and dipole relaxation effect, Journal of Alloys and compound 541, 428–432 (2012).
  • Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W.Hu, and H. Liu, Dielectric relaxation in Zr-doped SrTiO3 ceramics sintered in N2 with giant permittivity and low dielectric loss, J. Am. Ceram. Soc. 1–7 (2014).
  • A. K. Jonscher, A new understanding of the dielectric relaxation of solids, J. Mater. Sci. 16, 2037–2060 (1981).
  • C. Warangkanagool, and G. Rujijanagul, Improvement in dielectric and mechanical performance of CaCu3.1Ti4O12.1 by addition of Al2O3 nanoparticles, Nanoscale Res. Lett. 7, 68–74 (2012).
  • K. Funke, Jump relaxation in solid electrolyte, Prog. Solid State Chem. 22, 111–185 (1992).
  • R. Punia, R. S. Kundu, Meenakshi Dult, S. Murugavel, and N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system, J.Appl.Phys. 112, 083701–083705 (2012).
  • S. Dahiya, R. Punia, S. Murugavel, and A. S. Maan, Temperature and frequency dependent conductivity of lithium doped bismuth zinc vanadate semiconducting glassy system, Indian J. Phys. 88, 1169–1173 (2014).
  • N. Ahlawat, S. Sanghi, A. Agarwal, N. Kishore and S. Rani, Investigation of near constant loss contribution to conductivity in lithium bismo-silicate glasses, J. Non Cryst. Solids 354, 3767–3772, (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.