67
Views
2
CrossRef citations to date
0
Altmetric
Regular Papers

Short-term fluctuations of BaTiO3 dielectric dispersion

, &
Pages 92-100 | Received 25 Jan 2017, Accepted 02 Jul 2017, Published online: 09 Oct 2017

References

  • T. Fernandez-Diaz, C. Prieto, J. L. Martinez, J. A. Gonzalo, and M. Aguilar, Low frequency relaxation effects in pure and doped BaTiO3. Ferroelectrics 81, 19–22 (1988). DOI:10.1080/00150198808008802
  • V. K. Novik, A. M. Lotonov, and N. D. Gavrilova, 3D dependence of the dielectric dispersion in a BaTiO3 single crystal. Physics of the Solid State 55, 1668–1675 (2013). DOI:10.1134/S1063783413080222
  • V. V. Demyanov, Experimental check of the theory of ultrahigh-frequency dispersion in BaTiO3-type ferroelectrtrics. Fizika Tverdogo Tela 12, 2407–2411 (1970). (in Russian)
  • E. Stern, and A. Lurio, Dielectric Properties of BaTiO3 Single Crystals in the Paraelectric State from 1 kc/sec to 2000 Mc/sec. Phys. Rev. 123(1): 117–123 (1961). DOI:10.1103/PhysRev.123.117
  • P. Marton, and J. Hlinka, Computer Simulations of Frequency-Dependent Dielectric Response of 90-Degree Domain Walls in Tetragonal Barium Titanate. Ferroelectrics 373, 139–144 (2008). DOI:10.1080/00150190802409067
  • Yu. M. Poplavko, Study of microwave dielectric dispersion in ferroelectrics of various types. Proc. Int. Meeting on Ferroelectricity. Prague 2, 171–179 (1966).
  • O. Kersten, A. Rost, and G. Schmidt, Dielectric dispersion in BaTiO3 ceramics. Ferroelectrics 81, 31–34 (1988). DOI:10.1080/00150198808008805
  • L. N. Rvukhin Radiation-stimulated changes in the dielectric dispersion / Radiatsionno-stimulirovannye kvazineobratimye izmeneniya dielektricheskoy dispersii (in Russian). – Moscow: Editorial URSS, 2004, 144p
  • V. V. Demyanov, and S. P. Soloviev, Investigations of the ultrahigh-frequency dispersion in polycrystalline barium titanate. Izvestya Ak. Nauk USSR. Ser. Phys. 31, 1874–1878 (1967) (in Russian)
  • V. V. Demianov, and S. P. Solov'ev, Dielectric dispersion of irradiated BaTiO3 near the phase transition. Rev. de Phys. Appl. 7, 81–83 (1972).
  • E. Fatuzzo, Increase in Dielectric Constant during Switching in Barium Titanate and Triglycine Sulfate. J. Appl. Phys. 33, 2588–2595 (1962). https://doi.org/10.1063/1.1729025
  • Y. L. Wang, A. K. Tagantsev, D. Damjanovic, and N. Setter, Giant domain wall contribution to the dielectric susceptibility in BaTiO3 single crystals. Appl. Phys. Lett. 91, 062905 (2007). https://doi.org/10.1063/1.2751135
  • H. D. Megaw, Temperature Changes in the Crystal Structure of Barium Titanium Oxide. Proc. Roy. Soc. А. 189, 261–283 (1947). DOI:10.1098/rspa.1947.0038
  • W. Cochran, Crystal stability and the theory of ferroelectricity. Advances in Physics 9(36): 387–423 (1960). DOI:10.1080/00018736000101229
  • H. T. Evans, An X-ray diffraction study of tetragonal barium titanate. Acta Cryst. 14, 1019–1026 (1961). DOI:10.1107/S0365110X61002989
  • B. Ravel, E. A. Stern, R. I. Verdinskii, and V. Kraizman, Local structure and the phase transitions of BaTiO3. Ferroelectrics 206, 407–430 (1998). DOI:10.1080/00150199808009173
  • I. B. Bersuker, On the origin of ferroelectricity in perovskite-type crystals. Phys. Lett. 20, 589–590 (1966). DOI:10.1016/0031-9163(66)91127-9
  • Q. S. Zhang, T. Cagin, and W. A. III Goddard, The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. PNAS 103(40): 14695–14700 (2006). DOI:10.1073/pnas.0606612103
  • Q. Zhang, and W. A. III Goddard, Charge and polarization distributions at the 90° domain wall in barium titanate ferroelectric. Appl. Phys. Lett. 89, 182903 (2006). DOI:10.1063/1.2374676
  • E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, E. L. Rumyantsev, E. I. Shishkin, V. Y. Shur, and S. V. Kalinin, Screening and retardation effects on 180°-domain wall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions. Phys. Rev. B 78, 245409 (2008). https://doi.org/10.1103/PhysRevB.78.245409
  • T. J. Yang, V. Gopalan, P. J. Swart, and U. Mohideen, Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall. Phys. Rev. Lett. 82, 4106–4109 (1999). https://doi.org/10.1103/PhysRevLett.82.4106
  • S. V. Kalinin, C. Y. Johnson, and D. A. Bonnell, Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface. J. Appl. Phys. 91, 3816–3823 (2002). https://doi.org/10.1063/1.1446230
  • R. R. Newton, A. J. Ahearn, and K. G. McKay, Observation of the Ferro-Electric Barkhausen Effect in Barium Titanate. Phys. Rev. 75, 103–105 (1949). https://doi.org/10.1103/PhysRev.75.103
  • E. A. Eliseev, A. N. Morozovska, S. V. Kalinin, Y. Li, J. Shen, M. D. Glinchuk, L. Q. Chen, and V. Gopalan, Surface effect on domain wall width in ferroelectrics. J. Appl. Phys. 106, 084102 (2009). https://doi.org/10.1063/1.3236644
  • V. V. Bogatko, and N. F. Kovtonyuk, Surface conduction in polarized BaTiO3 crystals. Fizika Tverdogo Tela 12, 605–606 (1970) (in Russian)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.