246
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Modification of structural and electrical properties of Ca element on barium titanate nano-material synthesized by hydrothermal method

, , &
Pages 93-109 | Received 14 Apr 2017, Accepted 24 Aug 2017, Published online: 11 Dec 2017

References

  • A. Bokov, M. Maglione, and Z. Ye, Quasi-ferroelectric state in Ba (Ti1− xZrx) O3 relaxor: dielectric spectroscopy evidence. J. Phys., Condens. Matter, 19, 092001 (2007).
  • D. Wang, A. Bokov, Z.-G. Ye, J. Hlinka, and L. Bellaiche, Subterahertz dielectric relaxation in lead-free Ba (Zr, Ti) O3 relaxor ferroelectrics. Nature communications, 7 (2016).
  • J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic, Perspective on the Development of Lead‐free Piezoceramics. J. Ame. Cera. Soci., 92, 1153–1177 (2009).
  • S. Das, S. Pradhan, S. Bhuyan, R. Choudhary, and P. Das, Modification of Relaxor and Impedance Spectroscopy Properties of Lead Magnesium Niobate by Bismuth Ferrite. J. Electr. Mater, 1–13.
  • A. Al-Barakaty, S. Prosandeev, D. Wang, B. Dkhil, and L. Bellaiche, Finite-temperature properties of the relaxor PbMg 1/3 Nb 2/3 O 3 from atomistic simulations. Phys. Rev. B, 91, 214117 (2015).
  • S. W. Lu, B. I. Lee, Z. L. Wang, and W. D. Samuels, Hydrothermal synthesis and structural characterization of BaTiO 3 nanocrystals. J. Crys. Growth, 219, 269–276 (2000).
  • Z. Yu, C. Ang, R. Guo, and A. Bhalla, Piezoelectric and strain properties of Ba (Ti1-xZrx) O3 ceramics. J. Appl. Phys., 92, 1489–1493 (2002).
  • J.-Y. Chen, Y.-W. Tseng, and C.-L. Huang, Improved high Q value of (1−x). Ca (Mg 1/3 Ta 2/3) O 3–xCa 0.8 Sm 0.4/3 TiO 3 solid solution with zero temperature coefficient of resonant frequency. J. Alloys Comp., 494, 205–209 (2010).
  • F. Boujelben, F. Bahri, C. Boudaya, A. Maalej, H. Khemakhem, A. Simon, and M. Maglione, Effect of Ni doped BaTiO 3 on the dielectric properties in the Ba (Ni 1/3 Nb 2/3) x Ti 1− x O 3 solid solution. J. Alloys Comp., 481, 559–562 (2009).
  • Q. Xu, X.-F. Zhang, Y.-H. Huang, W. Chen, H.-X. Liu, M. Chen, and B.-H. Kim, Effect of MgO on structure and nonlinear dielectric properties of Ba 0.6 Sr 0.4 TiO 3/MgO composite ceramics prepared from superfine powders. J. Alloys Comp., 488, 448–453 (2009).
  • L.M. Garten, M. Burch, A.S. Gupta, R. Haislmaier, V. Gopalan, E.C. Dickey, and S. Trolier‐McKinstry, Relaxor Ferroelectric Behavior in Barium Strontium Titanate. J. Am. Cera. Soc., (2016).
  • K. Byrappa, and T. Adschiri, Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 53, 117–166 (2007).
  • W. L. Suchanek, and R. E. Riman, Hydrothermal synthesis of advanced ceramic powders. Adv.Scie. Technology, vol. 45: Trans Tech Publ, 2006. p. 184–193.
  • J.-Y. Yang, Y.-C. Su, and X.-Y. Liu, Hydrothermal synthesis, characterization and optical properties of La 2 Sn 2 O 7: Eu 3+ micro-octahedra. Transactions of Nonferrous Metals Society of China, 21, 535–543 (2011).
  • J.-R. Kim, K.-Y. Lee, M.-J. Suh, and S.-K. Ihm, Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support. Catalysis today, 185, 25–34 (2012).
  • E. Orhan, J. A. Varela, A. Zenatti, M. Gurgel, F. Pontes, E. Leite, E. Longo, P. Pizani, A. Beltran, and J. Andres, Room-temperature photoluminescence of Ba Ti O 3: Joint experimental and theoretical study. Phys. Rev. B, 71, 085113 (2005).
  • X. Zhu, J. Wang, Z. Zhang, J. Zhu, S. Zhou, Z. Liu, and N. Ming, Atomic‐Scale Characterization of Barium Titanate Powders Formed by the Hydrothermal Process. J. Am. Cera. Soc., 91, 1002–1008 (2008).
  • W.-S. Cho, Structural evolution and characterization of BaTiO 3 nanoparticles synthesized from polymeric precursor. Journal of Physics and Chemistry of Solids, 59, 659–666 (1998).
  • P. Durán, D. Gutierrez, J. Tartaj, M. A. Bañares, and C. Moure, On the formation of an oxycarbonate intermediate phase in the synthesis of BaTiO 3 from (Ba, Ti)-polymeric organic precursors. J. Euro. Cera. Soc, 22, 797–807 (2002).
  • S. Komarneni, Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods. Current Science-Bangalore-, 85, 1730–1734 (2003).
  • A. Souza, R. Silva, G. Santos, M. Moreira, D. Volanti, S. Teixeira, and E. Longo, Photoluminescence of barium–calcium titanates obtained by the microwave-assisted hydrothermal method (MAH). Chem. Phy. Lett., 488, 54–56 (2010).
  • D. Solís, T. López-Luke, E. De la Rosa, P. Salas, and C. Angeles-Chavez, Surfactant effect on the upconversion emission and decay time of ZrO 2: Yb-Er nanocrystals. Journal of Luminescence, 129, 449–455 (2009).
  • D. R. Zhang, H. L. Liu, R. H. Jin, N. Z. Zhang, Y. X. Liu, and Y. S. Kang, Synthesis and characterization of nanocrystalline LiTiO2 using a one-step hydrothermal method. Journal of Industrial and Engineering Chemistry, 13, 92–96 (2007).
  • S.-M. Wang, Q.-S. Wang, and Q.-L. Wan, Template-directed synthesis of MS (M = Cd, Zn) hollow microsphere via hydrothermal method. J. Crys. Growth, 310, 2439–2443 (2008).
  • E. Wu, POWD, an interactive program for powder diffraction data interpretation and indexing. Journal of Applied Crystallography, 22, 506–510 (1989).
  • A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56, 978–982 (1939).
  • M. Yoozbashi, and S. Yazdani, XRD and TEM study of bainitic ferrite plate thickness in nanostructured, carbide free bainitic steels. Materials chemistry and physics, 160, 148–154 (2015).
  • F.C. Meldrum, and H. Cölfen, Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews, 108, 4332–4432 (2008).
  • H. Cölfen, and M. Antonietti, Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition, 44, 5576–5591 (2005).
  • Y. Oaki, and H. Imai, Nanoengineering in echinoderms: the emergence of morphology from nanobricks. 2, 66–70 (2006).
  • A. Simoes, M. Ramirez, C. Riccardi, A. Ries, E. Longo, and J. A. Varela, Influence of temperature on the dielectric and ferroelectric properties of bismuth titanate thin films obtained by the polymeric precursor method. Materials chemistry and physics, 92, 373–378 (2005).
  • A. Z. Simões, F. Moura, T. Onofre, M. Ramirez, J. A. Varela, and E. Longo, Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles. J. Alloys Comp, 508, 620–624 (2010).
  • A. E. Souza, S. R. Teixeira, C. Morilla-Santos, W. H. Schreiner, P. N. Lisboa Filho, and E. Longo, Photoluminescence activity of Ba 1− x Ca x TiO 3: dependence on particle size and morphology. Journal of Materials Chemistry C, 2, 7056–7070 (2014).
  • V. Bovtun, J. Petzelt, V. Porokhonskyy, S. Kamba, and Y. Yakimenko, Structure of the dielectric spectrum of relaxor ferroelectrics. J. Euro. Cera. Soc., 21, 1307–1311 (2001).
  • A. A. Bokov, and Z.-G. Ye, Dielectric relaxation in relaxor ferroelectrics. Journal of Advanced dielectrics, 2, 1241010 (2012).
  • M. Panigrahi, and S. Panigrahi, Diffuse phase transition and dielectric study in Ba 0.95 Ca 0.05 TiO 3 ceramic. Physica B: Condensed Matter, 405, 2556–2559 (2010).
  • J. P. Praveen, K. Kumar, A. James, T. Karthik, S. Asthana, and D. Das, Large piezoelectric strain observed in sol–gel derived BZT–BCT ceramics. Current Applied Physics, 14, 396–402 (2014).
  • S. Patel, A. Chauhan, and R. Vaish, Large pyroelectric figure of merits for Sr-modified Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ceramics. Solid State Sciences, 52, 10–18 (2016).
  • H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, D. Jiang, and B. Xu, Enhanced dielectric relaxor properties in (1− x)(K 0.5 Na 0.5) NbO 3–x (Ba 0.6 Sr 0.4) 0.7 Bi 0.2 TiO 3 lead-free ceramic. J. Alloys. Comp, 579, 192–197 (2013).
  • L. Khemakhem, I. Kriaa, M. Derbel, and N. Abdelmoula, X-ray and dielectric studies of ferroelectric phase in the Ba1-x (Yb0. 5 Na0. 5) x TiO3 system for low doping level. International Journal, (2009).
  • Z.-G. Ye, and A. A. Bokov, Dielectric relaxation in relaxor ferroelectrics. J. Adv.Dielectrics, 02, 1241010 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.