438
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of shear piezoelectric coefficient d15 of piezoelectric ceramics by using piezoelectric cantilever beam in dynamic resonance

, , , , &
Pages 202-211 | Received 13 Apr 2017, Accepted 02 Oct 2017, Published online: 11 Dec 2017

References

  • S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, and C. B. Eom, Giant piezoelectricity on Si for hyperactive MEMS, Science. 334(6058), 958–961 (2011).
  • I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride), Nat. Mater. 15, 78–84 (2016).
  • M. H. Malakooti, and H. A. Sodano, Noncontact and simultaneous measurement of the d33 and d31 piezoelectric strain coefficients, Appl. Phys. Lett. 102, 061901 (2013).
  • T. Yu, S. J. Jiang, B. Y. Fan, Y. K. Zeng, G. Z. Zhang, and P. Liu, Characteristics of the PMnN-PMS-PZT pyroelectric ceramics for energy harvesting devices, Ferroelectrics. 494, 1–10 (2016).
  • Y. Xin, X. Li, H. Y. Tian, C. Guo, C. H. Qian, S. H. Wang, and C. Wang, Shoes-equipped piezoelectric transducer for energy harvesting: A brief review, Ferroelectrics. 493, 12–24 (2016).
  • S. J. Zhang, E.F. AlbertaR.E. Eitel, C. A. Randall, and T. R. Shrout, Elastic, piezoelectric, and dielectric characterization of modified BiScO3-PbTiO3 ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 52(11), 2131–2139 (2005).
  • J. Fialka, and P. Benes, Comparison of methods of piezoelectric coefficient measurement, IEEE International Instrumentation and Measurement Technology Conference (12MTC) 37–42 (2012).
  • M. Kahn, R. P. Ingel, and D. Lewis III, On the determination of the piezoelectric shear coefficient, d15, in a PZT ceramic, Ferroelectrics. 102, 225–234 (1990).
  • X. J. Zheng, Y. K. Zhu, X. Liu, J. Liu, Y. Zhang, and J. G. Chen, Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 61(2), 369–375 (2014).
  • R. J. Wang, Handbook of underwater acoustic materials, Science Press p. 144 (1983).
  • I. Kanno, K. Akama, K. Wasa, and H. Kotera, Evaluation of intrinsic shear piezoelectric coefficient d15 of c-axis oriented Pb(Zr,Ti)O3 films, Appl. Phys Express. 2, 091402 (2009).
  • J. J. Shi, C. J. Fan, M. H. Zhao, and J. S. Yang, Energy trapping of thickness-shear modes in inverted-mesa AT-cut quartz piezoelectric resonators, Ferroelectrics. 494, 157–169 (2016).
  • X. H. Yang, Y. X. Liu, W. S. Chen, and J. K. Liu, Miniaturization of a longitudinal-bending hybrid linear ultrasonic motor, Ceram. Int. 41, S607–S611 (2015).
  • Mi. Okayasu, and K. Watanabe, A study of the electric power generation properties of a lead zirconate titanate piezoelectric ceramic, Ceram. Int. 42, 14049–14060 (2016).
  • M. H. Malakooti, and H. A. Sodano, Direct measurement of piezoelectric shear coefficient, J. Appl. Phys. 113, 214106 (2013).
  • K. Akama, I. Kanno, R. Yokokawa, K. Wasa, and H. Kotera, Orientation dependence of shear mode piezoelectric properties of epitaxial Pb(Zrx,Ti1-x)O3 thin films, Jpn. J. Appl. Phys. 49(9), 09MA07 (2010).
  • I. Naniwa, K. Sato, S. Nakamura, and K. Sato, Active-head slider with piezoelectric actuator using shear-mode deformation, Microsyst. Technol. 15, 1619–1627 (2009).
  • T. Comyn, and A. W. Taveror, Aspect ratio dependence of d15 measurements in Motorola 3203 material, J. Eur. Ceram. Soc. 21, 9–12 (2001).
  • J. G. Chen, H. D. Shi, G. X. Liu, J. R. Cheng, and S. X. Dong, Temperature dependence of dielectric, piezoelectric and elastic properties of BiScO3-PbTiO3 high temperature ceramics with morphotropic phase boundary (MPB) composition, J. Alloy. Compd. 537, 280–285 (2012).
  • X. Q. Zhang, X. W. Zhang, G. M. Sessler, and X. S. Gong, Quasi-static and dynamic piezoelectric responses of layered polytetrafluoroethylene ferroelectrets, J. Phys. D: Appl. Phys. 47, 015501 (2014).
  • J. H. Zhao, X. J. Zheng, L. Zhou, Y. Zhang, J. Sun, W. J. Dong, S. F. Deng, and S. T. Peng, Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure, Smart Mater. Struct. 21(10), 105006 (2012).
  • M. A. Ahmad, A. M. Elshurafa, K. N. Salama, and H. N. Alshareef, Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters, J. Appl. Phys. 111, 102812 (2012).
  • J. M. Dietl, A. M. Wickenheiser, and E. Garcia, A Timoshenko beam model for cantilevered piezoelectric energy harvesters, Smart Mater. Struct. 19(5), 055018 (2010).
  • X. J. Zheng, Z. X. Zhang, Y. K. Zhu, J. L. Mei, S. T. Peng, L. Li, and Y. G. Yu, Analysis of energy harvesting performance for d15 mode piezoelectric bimorph in series connection based on Timoshenko beam model, IEEE ASME Trans. Mechatron. 20(2), 728–739 (2015).
  • C. L. Sun, L. F. Qin, F. Li, and Q. M. Wang, Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) device, J. Intel. Mat. Syst. Str. 20, 559–568 (2009).
  • A. Erturk, and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct. 18, 025009 (2009).
  • S. Jiang, X. Li, S. Guo, Y. Hu, J. Yang, and Q. Jiang, Performance of a piezoelectric bimorph for scavenging vibration energy, Smart Mater. Struct. 14, 769–774 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.