127
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Dielectric, ferroelectric, and photoluminescent properties of Dy3+ doped flexible multifunctional PVDF films

, , , &
Pages 212-223 | Received 14 May 2017, Accepted 02 Oct 2017, Published online: 11 Dec 2017

References

  • X. S. Wang, C. N. Xu, H. Yamada, K. Nishikubo and X. G. Zheng, Electro- mechano- optical conversions in Pr3+- doped BaTiO3- CaTiO3 ceramics, Adv. Mater. 17, 1254–1258 (2005).
  • H. Lu, C. W. Bark, D. E. Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, Mechanical Writing of Ferroelectric Polarization, Science 336, 59–61 (2012).
  • D. Peng, H. Zou, C.-N. Xu, J. Li, X. Wang, and X. Yao, Photoluminescent and Dielectric Characterizations of Pr Doped CaBi2Nb2O9 Multifunctional Ferroelectrics, Ferroelectrics 450, 113–120 (2013).
  • B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer and Q. M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed, Science 313, 334–336 (2011).
  • Z. M. Dang, J. K. Yuan, S. H. Yao and R. J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater. 25, 6334–6365 (2013).
  • Y. N. Hao, X. H. Wang, S. O. Brien, J. Lombardi and L. T. Li, Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density, J Mater Chem C 3, 9740–9747 (2015).
  • A. J. Lovinger, Ferroelectric polymers, Science 220, 1115–1121 (1983).
  • A. B. Silva, M. Arjmand, U. Sundararaj and R. E. S. Bretas, Novel composites of copper nanowire/PVDF with superior dielectric properties, Polymer 55, 226–234 (2014).
  • Y. Lu, J. Claude, B. Neese, Q. M. Zhang and Q. Wang, A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants, J. Am. Chem. Soc. 128, 8120–8121 (2006).
  • L. L. Sun, B. Li, Z. G. Zhang and W. H. Zhong, Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process, Eur. Polym. J. 46, 2112–2119 (2010).
  • E. Kar, N. Bose, S. Das, N. Mukherjee and S. Mukherjee, Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles, Phys. Chem. Chem. Phys. 17, 22784–22798 (2015).
  • H. J. Ye, L. Yang, W. Z. Shao, S. B. Sun and L. Zhen, Effect of electroactive phase transformation on electron structure and dielectric properties of uniaxial stretching poly(vinylidene fluoride) films, RSC Adv. 3, 23730–23736 (2013).
  • S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang and Z. Zhao, Formation mechanism of β-Phase in PVDF/CNT composite prepared by the sonication method, Macromolecules 42, 8870–8874 (2009).
  • S. L. Hsu, F. J. Lu, D. A. Waldman and M. Muthukumar, Analysis of the crystalline phase transformation of poly(vinylidene fluoride), Macromolecules 18, 2583–2587 (1985).
  • L. Li, M. Zhang, M. Rong and W. Ruan, Studies on the transformation process of PVDF from α to β phase by stretching, RSC Adv. 4, 3938–3943 (2014).
  • R. Ram, M. Rahaman and D. Khastgir, Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modeling of DC conductivity, Compos. Part A-Appl. S. 69, 30–39 (2015).
  • Y. Konishi and M. Cakmak, Nanoparticle induced network self-assembly in polymer-carbon black composites, Polymer 47, 5371–5391 (2006).
  • S. L. Jiang, U. Yu, J. J. Xie, L. P. Wang, Y. K. Zeng and M. Fu, Positive temperature coefficient properties of multiwall carbon nanotubes/poly(vinylidene fluoride) nanocomposites, J. Appl. Polym. Sci. 116, 838–842 (2010).
  • A. Lund, C. Gustafsson, H. Bertilsson and W. Rychwalski, Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres, Compos. Sci. Technol. 71, 222–229 (2011).
  • W. Zhou, Z. Wang, L. Dong, X. Sui and Q. Chen, Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles, Compos. Part A-Appl. S. 79, 183–191 (2015).
  • K. S. Deepa, M. S. Gopika and J. James, Influence of matrix conductivity and Coulomb blockade effect on the percolation threshold of insulator-conductor composites, Compos. Sci. Technol. 78, 18–23 (2013).
  • Y. K. A. Low, L. Y. Tan, L. P. Tan, F. Y. C. Boey and K. W. Ng, Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation, J. Appl. Polym. Sci. 128, 2902–2910 (2013).
  • E. K. Oikonomou, S. Tence-Girault, P. Gerard and S. Norvez, Swelling of semi-crystalline PVDF by a PMMA-based nanostructured diblock copolymer: Morphology and mechanical properties, Polymer 76, 89–97 (2015).
  • Y. Zhang, M. Zuo, T. Liu, Y. Song and Q. Zheng, Segmental dynamics and rheology of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) (70/30 by weight) blend filled with titania or poly(methyl methacrylate)-grafted titania, Compos. Sci. Technol. 123, 39–48 (2016).
  • Y. J. Li, Y. Iwakura, L. Zhao and H. Shimizu, Nanostructured poly(vinylidene fluoride) materials by melt blending with several percent of acrylic rubber, Macromolecules 41, 3120–3125 (2008).
  • P. M. Martins, V. Gomez, A. C. Lopes, C. J. Tavares, G. Botelho, S. Irusta and S. Lanceros-Mendez, Improving Photocatalytic Performance and Recyclability by Development of Er-Doped and Er/Pr-Codoped TiO2/Poly(vinylidene difluoride)-Trifluoroethylene Composite Membranes, J. Phys. Chem. C 118, 27944–27953 (2014).
  • H. Suzuki, Y. Hattori, T. Lizuka, K. Yuzawa and N. Matsumoto, Organic infrared optical materials and devices based on an organic rare earth complex, Thin Solid Films 438–439, 288–293 (2003).
  • H. Huang and B. Yan, Luminescence of nanophosphors Lu2SiO5 doped with different concentration of Tb3+ by in situ composition of hybrid precursors, Mater. Sci. Eng. B 117, 261–264 (2005).
  • Y. Sui, W. T. Chen, J. J. Ma, R. H. Hu and D. S. Liu, Enhanced dielectric and ferroelectric properties in PVDF composite flexible films through doping with diisopropylammonium bromide, RSC Adv. 6, 7364–7369 (2016).
  • Y. Sui, Q. Y. Luo, G. Zhao, X. K. Hong, Y. J. Liu and J. Mi, Preparation and properties of PVDF composite films modified with organic ferroelectric croconic acid, Ferroelectrics 506, 165–173 (2017).
  • T. Justel, H. Nikol and C. Ronda, New developments in the field of luminescent materials for lighting and displays, Angew. Chem. Int. Ed. 37, 3084–3103 (1998).
  • M. R. Robinson, J. C. Osrowski, G. C. Bazan and M. D. McGehee, Reduced operating voltages in polymer light- emitting diodes doped with rare- earth complexes, Adv. Mater. 15, 1547–1551 (2003).
  • D. M. Tobaldi, R. A. S. Ferreira, R. C. Pullar, M. P. Seabra, L. D. Corlos, J. Labrincha, Nano- titania doped with europium and neodymium showing simultaneous photoluminescent and photocatalytic behavior, J. Mat. Chem. C 3, 4970–4986 (2015).
  • W. Ma, J. Zhang and X. Wang, Crystallizaion and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates, Appl. Surf. Sci. 254, 2947–2954 (2008).
  • J. R. Gregorio, Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions, J. Appl. Polym. Sci. 100, 3272–3279 (2006).
  • T. Prabhakaran and J. Hemalatha, Ferroelectric and magnetic studies on unpoled Poly(vinylidene Fluoride)/Fe3O4 magnetoelectric nanocomposite structures, Mater. Chem. Phys. 137, 781–787 (2013).
  • P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive β phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films, Phys. Chem. Chem. Phys. 17, 1368–1378 (2015).
  • M. Benz, W. B. Euler and O. J. Gregory, The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride), Macromolecules 35, 2682–2688 (2002).
  • Y. Bormashenko, R. Pogreb, O. Stanevsky and E. Bormashenko, Vibrational spectrum of PVDF and its interpretation, Polym. Test. 23, 791–796 (2004).
  • A. Salimi and A. A. Yousefi, FTIR studies of β-phase crystal formation in stretched PVDF films, Polym. Test. 22, 699–704 (2003).
  • P. Martins, A. C. Lopes and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci. 39, 683–706 (2014).
  • L. Yang, J. Qiu, H. Ji, K. Zhu and J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites, Compos. Part A-Appl. S. 65, 125–134 (2014).
  • P. Thakur, A. Kool, B. Bagchi, S. Das and P. Nandy, Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride) thin films, Appl. Clay Sci. 99, 149–159 (2014).
  • P. Costa, J. Silva, V. Sencadas, C.M. F. Costa, W. J. Hattum, J. G. Rocha and S. Lanceros-Mendez, The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites, Carbon 47, 2590–2599 (2009).
  • D. Mandal, K. Henkel and D. Schmeisser, The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping, Mater. Lett. 73, 123–126 (2012).
  • B. S. Ince-Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, R. Kobylarz, M. Reveley and P. Cebe, Impact of nanosilicates on poly(vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling, Polymer 51, 1485–1493 (2010).
  • G. L. Wang, Y. M. Tian, D. X. Cao, Y. S. Yu and W. B. Sun, One-dimensional Salen-type chain-like lanthanide(III) coordination polymers: syntheses, crystal structures, and fluorescence properties, Z. Anorg. Allg. Chem. 637, 583–588 (2011).
  • Z. F. Li, X. X. Cheng, G. Li, H. J. Lu and H. F. Zhang, Syntheses, structures, fluorescence and thermal properties of three lanthanide coordination polymers built by N-benzoyl-N'-(4-benzoxy)thiourea, J. Lumin. 130, 2192–2200 (2010).
  • J. Yu, C. Wu, S. P. Sahu, L. P. Fernando, C. Szymanski and J. McNeill, Nanoscale 3D tracking with conjugated polymer nanoparticles, J. Am. Chem. Soc. 131, 18410–18414 (2009).
  • C. Jung, T. Roo and S. Mecking, Conjugated polymer composite nanoparticles by rapid mixing, Macromol. Rapid Comm. 35, 2038–2042 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.