92
Views
2
CrossRef citations to date
0
Altmetric
Articles

Magnetic properties of FeNi3/NiZn-ferrite nanocomposite prepared by hydrothermal method for application in high frequency

, &
Pages 116-125 | Received 26 Jun 2017, Accepted 31 Aug 2017, Published online: 13 Dec 2017

References

  • T. Ji, K. C. Kemp, K. S. Kim, et al., Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications, ACS Nano 8, 7571–7612 (2014).
  • J. B. Haun, T. J. Yoon, H. Lee, et al., Magnetic nanoparticle biosensors, WIREs Nanomedicine and Nanobiotechnology 2, 291–304 (2010).
  • W. R. Zhao, H. R. Chen, Y. S. Li, et al., Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property, Adv. Funct. Mater. 18, 2780–2788 (2008).
  • D. Ho, X. L. Sun, and S. H. Sun, Monodisperse magnetic nanoparticles for theranostic applications, Acc. Chem. Res. 44, 875–882 (2011).
  • G. Abellán, E. Coronado, C. Martí -Gastaldo, et al., Magnetic nanocomposites formed by FeNi3 nanoparticles embedded in raphene application as supercapacitors, Part. Part. Syst. Charact. 30, 853–863 (2013).
  • L. X. Wang, J. C. Li, Z. T. Wang, et al., Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal, Dalt. Trans. 42, 2572–2579 (2013).
  • C. N. S. Tang and I. M. C. Lo, Magnetic nanoparticles: Essential factors for sustainable environmental applications, Water Res. 47, 2613–2632 (2013).
  • Z. X. Yu, Z. P. Yao, N. Zhang, et al., Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application, J. Mater. Chem. A 1, 4571–4576 (2013).
  • X. F. Zhang, Y. X. Li, R. Liu, et al., High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz, ACS Appl. Mater. Interfaces 8, 3494–3498 (2016).
  • H. L. Lv, H. Q. Zhang, G. B. Ji, et al., Interface strategy to achieve tunable high frequency attenuation, ACS Appl. Mater. Interfaces 8, 6529–6538 (2016).
  • J. N. Calata, G. Q. Lu, and K. Ngo, Soft magnetic alloy–polymer composite for high-frequency power electronics application, J. Electron. Mater. 43, 126–131 (2014).
  • S. J. Yan, L. Zhen, C. Y. Xu, et al., Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core–shell structures, J. Phys. D. Appl. Phys. 43, 245003 (2010).
  • X. G. Lu, G. Y. Liang, Q. J. Sun, et al., High-frequency magnetic properties of FeNi3–SiO2 nanocomposite synthesized by a facile chemical method, J. Alloys Compd. 509, 5079–5083 (2011).
  • X. G. Liu, Z. Q. Ou, D. Y. Geng. et al., Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles, Carbon 48, 891–897 (2010).
  • Y. P. Sun, X. G. Liu, C. Feng, et al., A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber, J. Alloys Compd. 586, 688–692 (2014).
  • Z. Han, D. Li, H. Wang, et al., Broadband electromagnetic-wave absorption by FeCo/C nanocapsules, Appl. Phys. Lett. 95(2), 023114 (2009).
  • H. L. Lv, G. B. Ji, H. Q. Zhang, et al., CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties, Sci. Rep. 5, 18249 (2015).
  • N. J. Tang, W. Chen, W. Zhong, et al., Highly stable carbon-coated Fe/SiO2 composites: synthesis, structure and magnetic properties, Carbon 44, 423–427 (2006).
  • H. Luo, R. Z. Gong, X. Wang, et al., Fe3O4 cladding enhanced magnetic natural resonance and microwave absorption properties of Fe0.65Co0.35 alloy flakes, J. Alloys Compd. 646, 345–350 (2015).
  • Y. Q. Wang and P.S. Grant, NiZn ferrite/Fe hybrid epoxy-based composites: extending magnetic properties to high frequency, Appl, Phys. A: Mater. Sci. Process 117, 477–483 (2014).
  • B. Qu, C. L. Zhu, C. Y. Li, et al., Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material, ACS Appl. Mater. Interfaces 8, 3730–3735 (2016).
  • X. G. Lu, G. Y. Liang, Y. M. Zhang, et al., Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability, Nanotechnology 18, 015701 (2007).
  • Q. F. Li, Y. F. Li, X. Li, et al., A facile synthesis of superparamagnetic hybrid hollow nanospheres based on monodisperse nickel-zinc ferrite/polyethylene glycol and their electromagnetic, microwave absorbing properties, J. Alloys Compd. 608, 35–43 (2014).
  • S. Diodati, L. Pandolfo, A. Caneschi, et al., Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes, Nano Res. 7, 1027–1042 (2014).
  • L. J. Liu, J. G. Guan, W. D. Shi, et al., Facile synthesis and growth mechanism of flowerlike Ni−Fe alloy nanostructures, J. Phys. Chem. C 114, 13565–13570 (2010).
  • J. G. Guan, G. Q. Yan, W. Wang, et al., External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets, J. Mater. Chem. 22, 3909–3915 (2012).
  • J. C. Jia, J. C. Yu, Y. X. J. Wang, et al., Magnetic nanochains of FeNi3 prepared by a template-free microwave-hydrothermal method, ACS Appl. Mater. Interfaces 2, 2579–2584 (2010).
  • H. Y. Chen, C. J. Xu, G. Z. Zhao, et al., Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction, Mater. Lett. 91, 75–77 (2013).
  • B. Zhao, B. B. Fan, G. Shao, et al., Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method, Appl. Surf. Sci. 307, 293–300 (2014).
  • P. Markondeya Raj, H. Sharma, S. Samtani, et al., Magnetic losses in metal nanoparticle-insulator nanocomposites, J. Mater. Sci. Mater. Electron. 24, 3448–3455 (2013).
  • J. P. Zou, Z. Z. Wang, M. Q. Yan, et al., Enhanced interfacial polarization relaxation effect on microwave absorption properties of submicron-sized hollow Fe3O4 hemispheres, J. Phys. D: Applied Phys. 47, 275001 (2014).
  • Y. Kobayashi, M. Horie, M. Konno, et al., Preparation and properties of silica-coated cobalt nanoparticlesJ, Phys. Chem. B 107, 7420–7425 (2003).
  • Y. W. Zhao, C.Y. Ni, D. Kruczynski, et al., Exchange-coupled soft magnetic FeNi−SiO2 nanocomposite, J. Phys. Chem. B 108, 3691–3693 (2004).
  • P. Kollár, Z. Birčáková, J. Füzer, et al., Power loss separation in Fe-based composite materials, J. Magn. Magn. Mater. 327, 146–150 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.